×
20.06.2013
216.012.4d25

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ

Вид РИД

Изобретение

№ охранного документа
0002485331
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к преобразованию тепловой энергии низкотемпературного источника тепла в механическую энергию. Способ преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию в замкнутом циркуляционном контуре, при котором жидкая рабочая среда нагревается посредством передачи тепла от низкотемпературного источника и частично испаряется в устройстве для создания разрежения, можно предотвратить эрозию конденсатора для конденсации частично преобразованной в пар рабочей среды за счет того, что в частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы, только парообразная фаза подается на конденсатор для конденсации, и затем сконденсированная парообразная фаза и жидкая фаза объединяются. Также представлено устройство для осуществления способа. Изобретение позволяет надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к способу и устройству для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию согласно родовому понятию пункта 1 формулы изобретения и, соответственно, пункта 5 формулы изобретения. Подобный способ и, соответственно, подобное устройство известны, например, из патента США 7093503 В1.

Для использования тепловой энергии низкотемпературного источника тепла, как, например, геотермальных источников, газообразных, парообразных или жидкостных источников отходящего тепла или солнечной энергии, уже известно, что в циркуляционном контуре рабочая среда не испаряется, а только нагревается. За счет отказа от испарения можно использовать обычно требуемую для испарения рабочей среды тепловую энергию, например, можно нагреть заметно больший массовый поток рабочей среды. Тем самым для низкотемпературных источников в диапазоне температур менее 400оС можно достичь заметных преимуществ по КПД по сравнению с циркуляционными контурами с испарением рабочей среды.

В известном из патента США 7093503 В1 циркуляционном контуре на первом этапе жидкая рабочая среда доводится с помощью насоса до высокого давления. На втором этапе находящаяся под повышенным давлением жидкая рабочая среда в теплообменнике посредством теплопередачи нагревается от низкотемпературного источника тепла, без испарения. На третьем этапе нагретая жидкая рабочая среда расширяется в двухфазной турбине, причем за счет частичного испарения рабочей среды вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой, и тепловая энергия рабочей среды преобразуется в механическую энергию.

Двухфазная турбина имеет для этого непосредственно на ее входе форсунки, в которых рабочая среда за счет увеличения объема от повышенного входного давления к меньшему выходному давлению расширяется, благодаря чему рабочая среда частично испаряется. Возникающий за счет этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вал ротора связан с генератором, с помощью которого механическая энергия вала ротора преобразуется в электрическую энергию.

Выходящая из турбины двухфазная рабочая среда затем подается в конденсатор. В конденсаторе затем на четвертом этапе парообразная фаза разреженной, частично испаренной рабочей среды конденсируется и тем самым образуется вышеупомянутая жидкая рабочая среда. Последняя подается на уже упоминавшийся насос и тем самым циркуляционный контур замыкается. Представленная на фиг.2 T-s-диаграмма наглядно иллюстрирует протекающий при этом циркуляционный процесс. При этом SL обозначает линию кипения, TL - линию пара и К - критическую точку рабочей среды. Рабочая среда вдоль линии кипения SL от точки А до точки В вблизи критической точки К нагревается, от точки В до точки С при частичном испарении расширяется и от точки С до точки А - конденсируется.

Из WO 2005/031123 А1, кроме того, известно, что двухфазная смесь, выходящая из двухфазной турбины, подается в сепаратор, чтобы отделить парообразную фазу от жидкой фазы. Парообразная фаза затем в паровой турбине расширяется, чтобы получить дополнительную механическую энергию. Выходящий из паровой турбины разреженный пар подается на конденсатор, конденсируется в нем, затем с помощью насоса приводится к высокому давлению и затем объединяется с отделенной в сепараторе жидкой фазой двухфазной смеси. Возникающий за счет этого поток рабочей среды с помощью еще одного насоса накачивается в теплообменник, при этом он за счет теплопередачи нагревается от низкотемпературного источника. К конденсатору при этом подается только отработавший пар паровой турбины, но не двухфазная смесь двухфазной турбины. Этот циркуляционный контур хотя и имеет очень хороший КПД, но также отличается заметно более высокой сложностью и капитальными затратами.

В известном из ЕР 0485596 циркуляционном контуре также только нагретая жидкая, то есть не преобразованная в пар рабочая среда подается в устройство для создания разрежения и там частично испаряется. Пароводяная смесь, выходящая из устройства для создания разрежения, затем подается на сепаратор, который служит только для измерения жидкостной составляющей в паре.

В вышеупомянутом циркуляционном контуре на конденсатор подается двухфазная смесь, выходящая из турбины, так что жидкостная составляющая может привести к эрозии конденсатора, за счет чего срок службы конденсатора уменьшается.

Поэтому задачей настоящего изобретения является дополнительно усовершенствовать способ согласно родовому понятию пункта 1 и устройство согласно родовому понятию пункта 5 формулы изобретения, чтобы можно было надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура.

Соответствующий изобретению способ предусматривает, что в разреженной, частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы. Только парообразная фаза подается на конденсатор для конденсации. Сконденсированная парообразная (то есть затем жидкая) фаза и отделенная жидкая фаза после конденсатора, но перед этапом 1, то есть повышения давления жидкой рабочей среды, объединяются для получения жидкой рабочей среды. Жидкая фаза, таким образом, отводится мимо конденсатора, за счет чего может быть предотвращена эрозия конденсатора. Для этого необходимы только сепаратор для отделения жидкой фазы от парообразной фазы, обводной трубопровод для направления жидкой фазы мимо конденсатора и светвитель для объединения (отделенной) жидкой и сконденсированной парообразной (то есть затем жидкой) фазы. Сложность циркуляционного контура повышается, таким образом, лишь несущественно.

Величина капель жидкой фазы в парообразной фазе рабочей среды после разрежения зависит от давления рабочей среды в конденсаторе. Чем выше давление рабочей среды в конденсаторе и, тем самым, на выходе устройства для создания разрежения, тем меньше капли. В свою очередь, чем меньше капли, тем меньше опасность эрозии, которая вызывается каплями. На другой стороне, однако, с увеличением давления рабочей среды в конденсаторе и на выходе устройства для создания разрежения снижается механическая энергия, которая может быть выработана путем преобразования тепловой энергии посредством устройства для создания разрежения.

Поэтому предпочтительным образом давление рабочей среды при конденсации устанавливается на этапе 3 на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой энергией. Тем самым целенаправленно снижается выработанная механическая энергия, чтобы избежать эрозии конденсатора. На основе большого преимущества по КПД, обусловленного нагреванием вместо испарения рабочей среды с помощью низкотемпературного источника тепла, могут быть, однако, все равно достигнуты заметные преимущества по КПД по сравнению с обычными циркуляционными контурами с испарением рабочей среды с помощью низкотемпературного источника тепла.

Согласно особенно предпочтительному выполнению соответствующего изобретению способа объединение сконденсированной парообразной (то есть затем жидкой) фазы и (отделенной) жидкой фазы осуществляется в накопителе рабочей среды. Так как такой накопитель и так присутствует во многих циркуляционных контурах, можно отказаться от дополнительного конструктивного элемента для объединения обеих фаз.

Особенно хорошие КПД могут при этом достигаться, если низкотемпературный источник имеет температуру менее 400оС.

Соответствующее изобретению устройство содержит сепаратор для отделения жидкой фазы от парообразной фазы разреженной, частично испаренной рабочей среды, причем сепаратор размещен в направлении потока рабочей среды непосредственно перед конденсатором. Светвитель служит для объединения (отделенной) жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы разреженной, частично испаренной рабочей среды, причем светвитель размещен в направлении потока рабочей среды перед насосом. Сепаратор связан с конденсатором для подвода парообразной фазы в конденсатор. Светвитель связан с сепаратором для подвода (отделенной) жидкой фазы к светвителю и с конденсатором для подвода сконденсированной парообразной (то есть затем жидкой) фазы к светвителю. Преимущества, названные для соответствующего изобретению способа, также имеют место и для соответствующего изобретению устройства.

Предпочтительным образом давление рабочей среды устанавливается в устройстве для создания разрежения на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией.

Согласно особенно предпочтительному варианту осуществления светвитель выполнен как накопитель рабочей среды.

Предпочтительным образом в устройстве для создания разрежения для разрежения упомянутой рабочей среды в направлении потока рабочей среды размещены последовательно друг за другом форсунка и турбина. В форсунке рабочая среда может расширяться за счет увеличения объема от повышенного входного давления до пониженного выходного давления, благодаря чему рабочая среда частично испаряется. Возникающий из-за этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вместо одной единственной форсунки на входе турбины, например, в кольцевой конфигурации, может также быть расположено несколько форсунок, через которые параллельно протекает рабочая среда.

Форсунка и турбина могут при этом также образовывать единый конструктивный блок, то есть форсунки размещаются непосредственно на входе турбины.

Изобретение и его дополнительные варианты осуществления согласно признакам зависимых пунктов далее поясняются на примерах выполнения со ссылками на чертежи, на которых показано следующее:

Фиг.1 - схема соответствующего изобретению устройства в упрощенном схематичном представлении и

Фиг.2 - T-s-диаграмма циркуляционного контура, известного из уровня техники с нагреванием (без испарения) рабочей среды посредством низкотемпературного источника.

Соответствующее изобретению устройство 1 для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию включает в себя термодинамический циркуляционный контур, в котором в направлении потока рабочей среды размещены последовательно друг за другом теплообменник 2, устройство 3 для создания разрежения, сепаратор 7, конденсатор 8, накопитель рабочей среды в форме бака 9 конденсата и насос 10.

В случае низкотемпературного источника тепла речь идет об источнике тепла с температурой менее 400оС. Примерами таких источников тепла являются геотермальные источники (горячая термальная вода), промышленные источники отходящего тепла (например, отходящее тепло сталеплавильной, стекольной или цементной промышленности), а также солнечная энергия.

Для температур менее 300оС в качестве рабочей среды используется, например, охлаждающая жидкость типа R134, а для температур более 300оС используется, например, охлаждающая жидкость типа R245. Насос 10 служит для накачки жидкой рабочей среды до повышенного давления.

Теплообменник 2 служит для нагрева жидкой рабочей среды под повышенным давлением циркуляционного контура посредством передачи тепла низкотемпературного источника 20 тепла к рабочей среде без испарения рабочей среды, т.е. рабочая среда в теплообменнике 2 только нагревается, но не испаряется. Теплообменник для этого на своей первичной стороне обтекается низкотемпературным источником 20 тепла, например, горячей геотермальной водой, а на своей вторичной стороне - рабочей средой под повышенным давлением. Трубопровод 11 соединяет вторичную сторону теплообменника 2 с устройством 3 для создания разрежения. Рабочая среда на выходе вторичной стороны теплообменника 2 при входе в трубопровод 11 имеется далее как жидкость.

Устройство 3 для создания разрежения служит для разрежения нагретой жидкой рабочей среды, причем в устройстве 3 для создания разрежения за счет частичного испарения нагретой жидкой рабочей среды может создаваться разреженная, частично преобразованная в пар рабочая среда с жидкой и парообразной фазой, и тепловая энергия нагретой жидкой рабочей среды может преобразовываться в механическую энергию. Устройство 3 для создания разрежения содержит для этого форсунку 4 и турбину 5, которые размещены в направлении потока рабочей среды последовательно друг за другом. Форсунка и турбина могут при этом образовывать единый конструктивный блок, то есть форсунка 4 размещена непосредственно на входе турбины 5. Вместо только одной форсунки 4 на входе турбины 5, например, в кольцевой конфигурации могут быть размещены также несколько форсунок 4, через которые параллельно протекает рабочая среда.

Турбина 5 с выходной стороны через трубопровод 12 соединена с сепаратором 7. Сепаратор 7 служит для отделения жидкой фазы от парообразной фазы рабочей среды, частично испаренной в устройстве 3 для создания разрежения. Сепаратор 7 в направлении потока рабочей среды размещен непосредственно перед конденсатором 8 и через трубопровод 13 соединен с конденсатором 8 для подвода парообразной фазы в конденсатор 8 и через трубопровод 14 - с баком 9 для конденсата для подвода жидкой фазы в бак 9 для конденсата.

Конденсатор 8 служит для получения жидкой рабочей среды посредством конденсации частично испаренной рабочей среды.

Бак 9 для конденсата служит для объединения жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы частично испаренной рабочей среды. Бак 9 для конденсата размещен в направлении потока рабочей среды после конденсатора 8 и перед насосом 10 и через трубопровод 14 соединен с сепаратором 7 для подвода жидкой фазы и через трубопровод 15 - с конденсатором 8 для подвода сконденсированной парообразной фазы в бак 9 для конденсата.

При работе устройства 1 на первом этапе жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2.

На втором этапе жидкая рабочая среда под повышенным давлением нагревается в теплообменнике 2 за счет передачи тепла от протекающего на первичной стороне теплообменника 2 низкотемпературного источника 20 тепла к рабочей среде, при этом она не испаряется.

На третьем этапе в устройстве 3 для создания разрежения нагретая жидкая рабочая среда расширяется, причем рабочая среда частично испаряется, и ее тепловая энергия преобразуется в механическую энергию. Посредством устройства 3 для создания разрежения, таким образом, вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой. Для этого подведенная по трубопроводу 11 к форсунке 4 нагретая жидкая рабочая среда расширяется в форсунке 4 и за счет этого частично испаряется. Кинетическая энергия возникающего при этом пучка воды и пара в турбине 5 преобразуется в механическую энергию вала ротора и тем самым приводит в действие генератор 6, который механическую энергию вновь преобразует в электрическую энергию.

Созданная на третьем этапе выходящая из турбины 5 разреженная, частично испаренная рабочая среда в форме двухфазной смеси (пар/жидкость) через трубопровод 12 подается на сепаратор 7, в котором парообразная фаза отделяется от жидкой фазы двухфазной смеси.

Только парообразная фаза подается через трубопровод 13 на конденсатор 8. В конденсаторе 8 парообразная фаза конденсируется посредством охлаждения, например, посредством прямого охлаждения, воздушного охлаждения, гибридного охлаждения или водяного охлаждения, и сконденсированная парообразная (то есть затем жидкая) фаза по трубопроводу 15 подается в бак 9 для конденсата.

Напротив, отделенная жидкая фаза по трубопроводу 14 отводится мимо конденсатора 8 и только после этого, но еще перед насосом 10 и тем самым перед первым этапом, объединяется со сконденсированной парообразной (то есть затем жидкой) фазой в баке 9 для конденсата.

Жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2, за счет чего циркуляционный контур замыкается.

Посредством отделения жидкой фазы от газообразной фазы, выходящей из турбины 5 двухфазной смеси в сепараторе 7 и последующего направления жидкой фазы мимо конденсатора 8 непосредственно в бак 9 для конденсата, можно предотвратить эрозию конденсатора 8.

При этом давление рабочей среды в конденсаторе 8 устанавливается на третьем этапе на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией. Тем самым можно еще больше снизить эрозию конденсатора.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
Источник поступления информации: Роспатент

Показаны записи 601-610 из 1 428.
12.01.2017
№217.015.58f0

Предохранительная фрикционная муфта с автоматическим выключением при длительной перегрузке

Изобретение относится к области машиностроения, а именно к предохранительным фрикционным муфтам с автоматическим выключением при продолжительной перегрузке. Муфта имеет пару элементов (1, 3) сцепления, которые установлены с возможностью вращения вокруг общей оси (4). Элемент (1, 3)...
Тип: Изобретение
Номер охранного документа: 0002588318
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5931

Способ работы трехфазного инвертора питаемого вентильным преобразователем магнитного подшипника

Изобретение относится к способу работы трехфазного инвертора (6) питаемого вентильным преобразователем магнитного подшипника (2), в котором находящаяся на верхнем магнитном якоре (8) катушка (12) соединена с помощью первого контактного вывода (20) с первым выходом (W) трехфазного инвертора (6),...
Тип: Изобретение
Номер охранного документа: 0002588340
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5950

Система трубопроводов для текучей среды, имеющая агрегат для подготовки текучей среды, и способ подготовки текучей среды, протекающей по трубопроводу для текучей среды, а также переходная сцепка, имеющая такого рода систему трубопроводов для текучей среды, и подвижной состав, снабженный такого рода переходной сцепкой

Группа изобретений относится к области машиностроения, а именно к системе трубопроводов для текучей среды. Система трубопроводов для текучей среды включает в себя трубопровод и агрегат для подготовки текучей среды. Агрегат имеет байпасный трубопровод. На пути потока текучей среды байпасного...
Тип: Изобретение
Номер охранного документа: 0002588345
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5998

Динамоэлектрическая машина с самонесущим корпусом

Изобретение касается динамоэлектрической машины. Технический результат - повышение эффективности охлаждения и упрощение конструкции. Динамоэлектрическая машина выполнена с самонесущим корпусом, имеющим многоугольный участок пакета сердечника и по меньшей мере один участок подключения в осевом...
Тип: Изобретение
Номер охранного документа: 0002588027
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59b6

Способ регулирования газовой турбины

Изобретение описывает способ регулирования газовой турбины, причем величины (M, M) измерительного сигнала измеряются в разные моменты времени, а именно, по меньшей мере, в первый момент (n1) времени и во второй момент (n2) времени, причем первый момент (n1) времени предшествует второму моменту...
Тип: Изобретение
Номер охранного документа: 0002588338
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59ec

Резонаторный глушитель шума для радиальной турбомашины, в частности, для центробежного компрессора

Изобретение относится к диффузору (20) для радиальной турбомашины, как-то: центробежный компрессор (100) или радиальная турбина, в частности для такого центробежного компрессора (100). Этот диффузор (20) имеет по существу кольцеобразное полое пространство (30), ограничивающееся по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002587814
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b91

Гибридный самолет

Изобретение относится к области авиации, в частности к гибридным летательным аппаратам. Самолет содержит блок создания тяги, блок генерирования энергии и электрическое передаточное устройство для передачи энергии от блока генерирования энергии к блоку создания тяги. Блок создания тяги состоит...
Тип: Изобретение
Номер охранного документа: 0002589532
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5bc2

Несущая платформа

Изобретение относится к электротехнике. Технический результат состоит в упрощении и удешевлении изготовления. Устройство (15) для электрически изолированной установки высоковольтных приборов (3, 4, 5, 6) снабжено электрически непроводящими опорными изоляторами (7), которые установлены на опоры...
Тип: Изобретение
Номер охранного документа: 0002589729
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5bfa

Вч объемный резонатор и ускоритель

Изобретение относится к высокочастотному (ВЧ) объемному резонатору для ускорения заряженных частиц (15), причем в ВЧ объемный резонатор (11) может вводиться электромагнитное ВЧ поле, которое в процессе работы воздействует на пучок (15) частиц, который пересекает ВЧ объемный резонатор. Резонатор...
Тип: Изобретение
Номер охранного документа: 0002589739
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5c57

Способ и инструмент для изготовления соединения с плоским дном и центральным выступом

Звено (400) торцового зубчатого соединения для вращательного соединения, содержащее: множество зубьев (402, 403), расположенных по кругу и выступающих от плоскости круга, продолжаясь в радиальном направлении (407) и периферийном направлении (409), причем боковая поверхность (411) зуба (403) из...
Тип: Изобретение
Номер охранного документа: 0002589964
Дата охранного документа: 10.07.2016
Показаны записи 601-610 из 944.
10.06.2016
№216.015.4941

Способ быстрого подключения парогенератора

Изобретение относится к энергетике. Способ подключения, по меньшей мере, одного второго парогенератора к первому парогенератору в энергетической установке, содержащей, по меньшей мере, два парогенератора и одну паровую турбину, заключается в том, что используемая для приведения в движение...
Тип: Изобретение
Номер охранного документа: 0002586415
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49cf

Матричный инвертор и способ формирования переменного напряжения во второй сети переменного напряжения из переменного напряжения в первой сети переменного напряжения посредством матричного инвертора

Изобретение относится к матричному инвертору (MU), который соединен с первой и второй многофазной сетью (N1, N2) переменного напряжения. С первой сетью (N1) переменного напряжения соединены соответственно первые индуктивные схемные элементы (Su1, Sv1, Sw1), и со второй сетью (N2) переменного...
Тип: Изобретение
Номер охранного документа: 0002586323
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49e4

Устройство и способ получения, в частности in situ получения, углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу извлечения углеводородсодержащего вещества, в частности битума или сверхтяжелой нефти, из пластового резервуара. К пластовому резервуару может быть подведена тепловая энергия для уменьшения вязкости вещества, для чего предусмотрен по меньшей...
Тип: Изобретение
Номер охранного документа: 0002586344
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49f1

Схемное устройство с полупроводниковым переключателем и относящейся к нему схемой управления

Изобретение относится к области вычислительной техники и может быть использовано в схемном устройстве с полупроводниковым переключателем. Техническим результатом является создание устройства переключения, с помощью которого ток может переключаться и при относительно больших мощностях....
Тип: Изобретение
Номер охранного документа: 0002586870
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a08

Тормозная система рельсового транспортного средства

Группа изобретений относится к электродинамическим тормозным системам для транспортных средств. Тормозная система рельсового транспортного средства содержит по меньшей мере один первый электродинамический тормоз (24; 80), который включает в себя приводной агрегат (16), имеющий приводной...
Тип: Изобретение
Номер охранного документа: 0002586943
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a12

Система контроля и диагностики для основанной на энергии текучей среды машинной системы, а также основанная на энергии текучей среды машинная система

Изобретение относится к системе (1) контроля и диагностики для основанной на энергии текучей среды машинной системы (30). Основанная на энергии текучей среды машинная система (30) содержит множество различных подсистем (16, 17, 18, 19, 20, 21, 22, 25, 26) и компонентов (13, 14, 15, 23, 24)...
Тип: Изобретение
Номер охранного документа: 0002587122
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a22

Система рельсовых транспортных средств

Изобретение относится к электровозам и моторным вагонам. Система рельсовых транспортных средств включает набор вагонов (12.1-12.7), которые предусмотрены для перевозки пассажиров. Набор вагонов имеет два головных вагона (12.1, 12.7), по меньшей мере один безмоторный промежуточный вагон (12.3,...
Тип: Изобретение
Номер охранного документа: 0002587133
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a24

Газотранспортная система и способ эксплуатации газотранспортной системы

Группа изобретений относится к трубопроводному транспорту. Для защиты от коррозии в трубопроводе используется катодная защитная система, которая содержит множество расположенных в почве стержней заземления, которые электрически соединены каждый с почвой и электрически связаны с находящимся в...
Тип: Изобретение
Номер охранного документа: 0002587024
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a62

Система управления накопителями текучей среды и способ контроля объемов текучей среды и управления передачей объемов текучей среды внутри сети текучей среды

Изобретение относится к контролю текучей среды и управлению передачей объемов текучей среды внутри сети текучей среды. Система (1а, 1b) управления накопителями текучей среды для контроля объемов текучей среды и для управления передачей объемов текучей среды внутри сети текучей среды содержит...
Тип: Изобретение
Номер охранного документа: 0002587001
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4a63

Турбинный узел, соответствующая трубка соударительного охлаждения и газотурбинный двигатель

Турбинный узел содержит полую аэродинамическую часть, имеющую по меньшей мере одну полость с по меньшей мере одной трубкой соударительного охлаждения, предназначенную для введения внутрь полости полой аэродинамической части и используемую для соударительного охлаждения, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002587032
Дата охранного документа: 10.06.2016
+ добавить свой РИД