×
20.06.2013
216.012.4d25

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ

Вид РИД

Изобретение

№ охранного документа
0002485331
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к преобразованию тепловой энергии низкотемпературного источника тепла в механическую энергию. Способ преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию в замкнутом циркуляционном контуре, при котором жидкая рабочая среда нагревается посредством передачи тепла от низкотемпературного источника и частично испаряется в устройстве для создания разрежения, можно предотвратить эрозию конденсатора для конденсации частично преобразованной в пар рабочей среды за счет того, что в частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы, только парообразная фаза подается на конденсатор для конденсации, и затем сконденсированная парообразная фаза и жидкая фаза объединяются. Также представлено устройство для осуществления способа. Изобретение позволяет надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к способу и устройству для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию согласно родовому понятию пункта 1 формулы изобретения и, соответственно, пункта 5 формулы изобретения. Подобный способ и, соответственно, подобное устройство известны, например, из патента США 7093503 В1.

Для использования тепловой энергии низкотемпературного источника тепла, как, например, геотермальных источников, газообразных, парообразных или жидкостных источников отходящего тепла или солнечной энергии, уже известно, что в циркуляционном контуре рабочая среда не испаряется, а только нагревается. За счет отказа от испарения можно использовать обычно требуемую для испарения рабочей среды тепловую энергию, например, можно нагреть заметно больший массовый поток рабочей среды. Тем самым для низкотемпературных источников в диапазоне температур менее 400оС можно достичь заметных преимуществ по КПД по сравнению с циркуляционными контурами с испарением рабочей среды.

В известном из патента США 7093503 В1 циркуляционном контуре на первом этапе жидкая рабочая среда доводится с помощью насоса до высокого давления. На втором этапе находящаяся под повышенным давлением жидкая рабочая среда в теплообменнике посредством теплопередачи нагревается от низкотемпературного источника тепла, без испарения. На третьем этапе нагретая жидкая рабочая среда расширяется в двухфазной турбине, причем за счет частичного испарения рабочей среды вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой, и тепловая энергия рабочей среды преобразуется в механическую энергию.

Двухфазная турбина имеет для этого непосредственно на ее входе форсунки, в которых рабочая среда за счет увеличения объема от повышенного входного давления к меньшему выходному давлению расширяется, благодаря чему рабочая среда частично испаряется. Возникающий за счет этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вал ротора связан с генератором, с помощью которого механическая энергия вала ротора преобразуется в электрическую энергию.

Выходящая из турбины двухфазная рабочая среда затем подается в конденсатор. В конденсаторе затем на четвертом этапе парообразная фаза разреженной, частично испаренной рабочей среды конденсируется и тем самым образуется вышеупомянутая жидкая рабочая среда. Последняя подается на уже упоминавшийся насос и тем самым циркуляционный контур замыкается. Представленная на фиг.2 T-s-диаграмма наглядно иллюстрирует протекающий при этом циркуляционный процесс. При этом SL обозначает линию кипения, TL - линию пара и К - критическую точку рабочей среды. Рабочая среда вдоль линии кипения SL от точки А до точки В вблизи критической точки К нагревается, от точки В до точки С при частичном испарении расширяется и от точки С до точки А - конденсируется.

Из WO 2005/031123 А1, кроме того, известно, что двухфазная смесь, выходящая из двухфазной турбины, подается в сепаратор, чтобы отделить парообразную фазу от жидкой фазы. Парообразная фаза затем в паровой турбине расширяется, чтобы получить дополнительную механическую энергию. Выходящий из паровой турбины разреженный пар подается на конденсатор, конденсируется в нем, затем с помощью насоса приводится к высокому давлению и затем объединяется с отделенной в сепараторе жидкой фазой двухфазной смеси. Возникающий за счет этого поток рабочей среды с помощью еще одного насоса накачивается в теплообменник, при этом он за счет теплопередачи нагревается от низкотемпературного источника. К конденсатору при этом подается только отработавший пар паровой турбины, но не двухфазная смесь двухфазной турбины. Этот циркуляционный контур хотя и имеет очень хороший КПД, но также отличается заметно более высокой сложностью и капитальными затратами.

В известном из ЕР 0485596 циркуляционном контуре также только нагретая жидкая, то есть не преобразованная в пар рабочая среда подается в устройство для создания разрежения и там частично испаряется. Пароводяная смесь, выходящая из устройства для создания разрежения, затем подается на сепаратор, который служит только для измерения жидкостной составляющей в паре.

В вышеупомянутом циркуляционном контуре на конденсатор подается двухфазная смесь, выходящая из турбины, так что жидкостная составляющая может привести к эрозии конденсатора, за счет чего срок службы конденсатора уменьшается.

Поэтому задачей настоящего изобретения является дополнительно усовершенствовать способ согласно родовому понятию пункта 1 и устройство согласно родовому понятию пункта 5 формулы изобретения, чтобы можно было надежным образом предотвратить эрозию конденсатора, не повышая существенно сложность циркуляционного контура.

Соответствующий изобретению способ предусматривает, что в разреженной, частично преобразованной в пар рабочей среде непосредственно перед конденсатором жидкая фаза отделяется от парообразной фазы. Только парообразная фаза подается на конденсатор для конденсации. Сконденсированная парообразная (то есть затем жидкая) фаза и отделенная жидкая фаза после конденсатора, но перед этапом 1, то есть повышения давления жидкой рабочей среды, объединяются для получения жидкой рабочей среды. Жидкая фаза, таким образом, отводится мимо конденсатора, за счет чего может быть предотвращена эрозия конденсатора. Для этого необходимы только сепаратор для отделения жидкой фазы от парообразной фазы, обводной трубопровод для направления жидкой фазы мимо конденсатора и светвитель для объединения (отделенной) жидкой и сконденсированной парообразной (то есть затем жидкой) фазы. Сложность циркуляционного контура повышается, таким образом, лишь несущественно.

Величина капель жидкой фазы в парообразной фазе рабочей среды после разрежения зависит от давления рабочей среды в конденсаторе. Чем выше давление рабочей среды в конденсаторе и, тем самым, на выходе устройства для создания разрежения, тем меньше капли. В свою очередь, чем меньше капли, тем меньше опасность эрозии, которая вызывается каплями. На другой стороне, однако, с увеличением давления рабочей среды в конденсаторе и на выходе устройства для создания разрежения снижается механическая энергия, которая может быть выработана путем преобразования тепловой энергии посредством устройства для создания разрежения.

Поэтому предпочтительным образом давление рабочей среды при конденсации устанавливается на этапе 3 на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой энергией. Тем самым целенаправленно снижается выработанная механическая энергия, чтобы избежать эрозии конденсатора. На основе большого преимущества по КПД, обусловленного нагреванием вместо испарения рабочей среды с помощью низкотемпературного источника тепла, могут быть, однако, все равно достигнуты заметные преимущества по КПД по сравнению с обычными циркуляционными контурами с испарением рабочей среды с помощью низкотемпературного источника тепла.

Согласно особенно предпочтительному выполнению соответствующего изобретению способа объединение сконденсированной парообразной (то есть затем жидкой) фазы и (отделенной) жидкой фазы осуществляется в накопителе рабочей среды. Так как такой накопитель и так присутствует во многих циркуляционных контурах, можно отказаться от дополнительного конструктивного элемента для объединения обеих фаз.

Особенно хорошие КПД могут при этом достигаться, если низкотемпературный источник имеет температуру менее 400оС.

Соответствующее изобретению устройство содержит сепаратор для отделения жидкой фазы от парообразной фазы разреженной, частично испаренной рабочей среды, причем сепаратор размещен в направлении потока рабочей среды непосредственно перед конденсатором. Светвитель служит для объединения (отделенной) жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы разреженной, частично испаренной рабочей среды, причем светвитель размещен в направлении потока рабочей среды перед насосом. Сепаратор связан с конденсатором для подвода парообразной фазы в конденсатор. Светвитель связан с сепаратором для подвода (отделенной) жидкой фазы к светвителю и с конденсатором для подвода сконденсированной парообразной (то есть затем жидкой) фазы к светвителю. Преимущества, названные для соответствующего изобретению способа, также имеют место и для соответствующего изобретению устройства.

Предпочтительным образом давление рабочей среды устанавливается в устройстве для создания разрежения на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией.

Согласно особенно предпочтительному варианту осуществления светвитель выполнен как накопитель рабочей среды.

Предпочтительным образом в устройстве для создания разрежения для разрежения упомянутой рабочей среды в направлении потока рабочей среды размещены последовательно друг за другом форсунка и турбина. В форсунке рабочая среда может расширяться за счет увеличения объема от повышенного входного давления до пониженного выходного давления, благодаря чему рабочая среда частично испаряется. Возникающий из-за этого пучок воды и пара направляется на лопатки турбины, посредством которой кинетическая энергия пучка воды и пара преобразуется в механическую энергию вала ротора. Вместо одной единственной форсунки на входе турбины, например, в кольцевой конфигурации, может также быть расположено несколько форсунок, через которые параллельно протекает рабочая среда.

Форсунка и турбина могут при этом также образовывать единый конструктивный блок, то есть форсунки размещаются непосредственно на входе турбины.

Изобретение и его дополнительные варианты осуществления согласно признакам зависимых пунктов далее поясняются на примерах выполнения со ссылками на чертежи, на которых показано следующее:

Фиг.1 - схема соответствующего изобретению устройства в упрощенном схематичном представлении и

Фиг.2 - T-s-диаграмма циркуляционного контура, известного из уровня техники с нагреванием (без испарения) рабочей среды посредством низкотемпературного источника.

Соответствующее изобретению устройство 1 для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию включает в себя термодинамический циркуляционный контур, в котором в направлении потока рабочей среды размещены последовательно друг за другом теплообменник 2, устройство 3 для создания разрежения, сепаратор 7, конденсатор 8, накопитель рабочей среды в форме бака 9 конденсата и насос 10.

В случае низкотемпературного источника тепла речь идет об источнике тепла с температурой менее 400оС. Примерами таких источников тепла являются геотермальные источники (горячая термальная вода), промышленные источники отходящего тепла (например, отходящее тепло сталеплавильной, стекольной или цементной промышленности), а также солнечная энергия.

Для температур менее 300оС в качестве рабочей среды используется, например, охлаждающая жидкость типа R134, а для температур более 300оС используется, например, охлаждающая жидкость типа R245. Насос 10 служит для накачки жидкой рабочей среды до повышенного давления.

Теплообменник 2 служит для нагрева жидкой рабочей среды под повышенным давлением циркуляционного контура посредством передачи тепла низкотемпературного источника 20 тепла к рабочей среде без испарения рабочей среды, т.е. рабочая среда в теплообменнике 2 только нагревается, но не испаряется. Теплообменник для этого на своей первичной стороне обтекается низкотемпературным источником 20 тепла, например, горячей геотермальной водой, а на своей вторичной стороне - рабочей средой под повышенным давлением. Трубопровод 11 соединяет вторичную сторону теплообменника 2 с устройством 3 для создания разрежения. Рабочая среда на выходе вторичной стороны теплообменника 2 при входе в трубопровод 11 имеется далее как жидкость.

Устройство 3 для создания разрежения служит для разрежения нагретой жидкой рабочей среды, причем в устройстве 3 для создания разрежения за счет частичного испарения нагретой жидкой рабочей среды может создаваться разреженная, частично преобразованная в пар рабочая среда с жидкой и парообразной фазой, и тепловая энергия нагретой жидкой рабочей среды может преобразовываться в механическую энергию. Устройство 3 для создания разрежения содержит для этого форсунку 4 и турбину 5, которые размещены в направлении потока рабочей среды последовательно друг за другом. Форсунка и турбина могут при этом образовывать единый конструктивный блок, то есть форсунка 4 размещена непосредственно на входе турбины 5. Вместо только одной форсунки 4 на входе турбины 5, например, в кольцевой конфигурации могут быть размещены также несколько форсунок 4, через которые параллельно протекает рабочая среда.

Турбина 5 с выходной стороны через трубопровод 12 соединена с сепаратором 7. Сепаратор 7 служит для отделения жидкой фазы от парообразной фазы рабочей среды, частично испаренной в устройстве 3 для создания разрежения. Сепаратор 7 в направлении потока рабочей среды размещен непосредственно перед конденсатором 8 и через трубопровод 13 соединен с конденсатором 8 для подвода парообразной фазы в конденсатор 8 и через трубопровод 14 - с баком 9 для конденсата для подвода жидкой фазы в бак 9 для конденсата.

Конденсатор 8 служит для получения жидкой рабочей среды посредством конденсации частично испаренной рабочей среды.

Бак 9 для конденсата служит для объединения жидкой фазы и сконденсированной парообразной (то есть затем жидкой) фазы частично испаренной рабочей среды. Бак 9 для конденсата размещен в направлении потока рабочей среды после конденсатора 8 и перед насосом 10 и через трубопровод 14 соединен с сепаратором 7 для подвода жидкой фазы и через трубопровод 15 - с конденсатором 8 для подвода сконденсированной парообразной фазы в бак 9 для конденсата.

При работе устройства 1 на первом этапе жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2.

На втором этапе жидкая рабочая среда под повышенным давлением нагревается в теплообменнике 2 за счет передачи тепла от протекающего на первичной стороне теплообменника 2 низкотемпературного источника 20 тепла к рабочей среде, при этом она не испаряется.

На третьем этапе в устройстве 3 для создания разрежения нагретая жидкая рабочая среда расширяется, причем рабочая среда частично испаряется, и ее тепловая энергия преобразуется в механическую энергию. Посредством устройства 3 для создания разрежения, таким образом, вырабатывается разреженная, частично испаренная рабочая среда с жидкой и парообразной фазой. Для этого подведенная по трубопроводу 11 к форсунке 4 нагретая жидкая рабочая среда расширяется в форсунке 4 и за счет этого частично испаряется. Кинетическая энергия возникающего при этом пучка воды и пара в турбине 5 преобразуется в механическую энергию вала ротора и тем самым приводит в действие генератор 6, который механическую энергию вновь преобразует в электрическую энергию.

Созданная на третьем этапе выходящая из турбины 5 разреженная, частично испаренная рабочая среда в форме двухфазной смеси (пар/жидкость) через трубопровод 12 подается на сепаратор 7, в котором парообразная фаза отделяется от жидкой фазы двухфазной смеси.

Только парообразная фаза подается через трубопровод 13 на конденсатор 8. В конденсаторе 8 парообразная фаза конденсируется посредством охлаждения, например, посредством прямого охлаждения, воздушного охлаждения, гибридного охлаждения или водяного охлаждения, и сконденсированная парообразная (то есть затем жидкая) фаза по трубопроводу 15 подается в бак 9 для конденсата.

Напротив, отделенная жидкая фаза по трубопроводу 14 отводится мимо конденсатора 8 и только после этого, но еще перед насосом 10 и тем самым перед первым этапом, объединяется со сконденсированной парообразной (то есть затем жидкой) фазой в баке 9 для конденсата.

Жидкая рабочая среда из бака 9 для конденсата с помощью насоса 10 доводится до повышенного давления и накачивается в теплообменник 2, за счет чего циркуляционный контур замыкается.

Посредством отделения жидкой фазы от газообразной фазы, выходящей из турбины 5 двухфазной смеси в сепараторе 7 и последующего направления жидкой фазы мимо конденсатора 8 непосредственно в бак 9 для конденсата, можно предотвратить эрозию конденсатора 8.

При этом давление рабочей среды в конденсаторе 8 устанавливается на третьем этапе на оптимум между минимально возможным размером капель жидкой фазы в парообразной фазе рабочей среды и максимально возможной вырабатываемой механической энергией. Тем самым можно еще больше снизить эрозию конденсатора.


СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ НИЗКОТЕМПЕРАТУРНОГО ИСТОЧНИКА ТЕПЛА В МЕХАНИЧЕСКУЮ ЭНЕРГИЮ
Источник поступления информации: Роспатент

Показаны записи 461-470 из 1 428.
20.10.2015
№216.013.86db

Способ функционирования поточной линии, сборочный прицеп, буксирная тяга, тяжелая машина, установленная на сборочном прицепе, и поточная линия

Изобретение относится к области сборки тяжелых машин, например обтекателей (3) ветровых турбин, на поточной линии (1), содержащей две или более сборочные станции (А, А,А, А, А, А). Способ содержит этапы, на которых устанавливают подготовленный сборочный прицеп (5, 5а, 5b, …, 5n-2, 5n-1, 5n) в...
Тип: Изобретение
Номер охранного документа: 0002566126
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8746

Сквозное переходное устройство для смазочно-охлаждающей эмульсии для использования с инструментами станков с полым шпинделем

Группа изобретений относится к машиностроению и может быть использована при обработке шлифовальными или другими инструментами на станах с полым шпинделем. Переходное устройство содержит входное отверстие в своей первой части для соединения с центральным проходом вала, по меньшей мере одно...
Тип: Изобретение
Номер охранного документа: 0002566233
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.885a

Рельсовое транспортное средство

Изобретение касается железнодорожного транспорта. Рельсовое транспортное средство (1) включает по меньшей мере один держатель (20) приборов, расположенный в области середины поперечной оси рельсового транспортного средства (1) между крышей (10) и облицовкой потолка. В держатель (20) приборов...
Тип: Изобретение
Номер охранного документа: 0002566509
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8906

Приводная система силового выключателя

Приводная система силового выключателя имеет поворотный приводной рычаг (17), взаимодействующий с блокировочным элементом (14), имеющим перемещаемые в зону поворота приводного рычага (17) первую зону (27) блокирования и первую зону (28) деблокирования. Блокировочный элемент (14) имеет вторую...
Тип: Изобретение
Номер охранного документа: 0002566681
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8912

Система слоев с двухслойным металлическим слоем

Изобретение относится к защитному коррозионно-стойкому покрытию, нанесенному на подложку (4) из жаропрочного сплава. Указанное покрытие содержит по меньшей мере двухслойный металлический слой (7, 10), состоящий по меньшей мере из одного нижнего (7) и верхнего (10) слоя на нижнем слое (7)....
Тип: Изобретение
Номер охранного документа: 0002566693
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.89bf

Камера сгорания газовой турбины

Камера сгорания газовой турбины содержит пилотную топливную форсунку, расположенную в среднем участке цилиндра, открывающегося на одном конце в камеру сгорания. Пилотная топливная форсунка содержит топливную форсунку, а также радиально отстоящую вокруг внешнего периметра топливной форсунки...
Тип: Изобретение
Номер охранного документа: 0002566866
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.89ca

Сегмент платформы, предназначенный для обеспечения опоры для направляющей лопатки соплового направляющего аппарата, и способ охлаждения данного сегмента

Сегмент платформы, предназначенный для обеспечения опоры для сопловой направляющей лопатки для газовой турбины, содержит: поверхность канала для прохода газа, находящуюся в контакте с потоком газа, выходящего из камеры сгорания; поверхность охлаждения, расположенную напротив поверхности канала...
Тип: Изобретение
Номер охранного документа: 0002566877
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8acd

Сплав на основе никеля, применение и способ

Изобретение относится к металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы при сварке. Сплав на основе никеля содержит, вес.%: С 0,13-0,2, Cr 13,5-14,5, Со 9,0-10,0, Мо 1,5-2,4, W 3,4-4,0, Ti 4,6-5,0, Al 2,6-3,0, В 0,005-0,008, при необходимости Nb макс....
Тип: Изобретение
Номер охранного документа: 0002567140
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8b28

Испытательный контактный вывод для трансформатора тока

Испытательный контактный вывод для трансформатора тока распределительного устройства с газовой изоляцией содержит трубчатый опорный элемент (2), внутри которого расположен первичный провод и расположенный по окружности опорного элемента (2) кольцеобразный измерительный сердечник (3), по меньшей...
Тип: Изобретение
Номер охранного документа: 0002567231
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bb6

Высоковольтный источник постоянного напряжения и ускоритель частиц

Изобретение относится к высоковольтному источнику постоянного напряжения, содержащему набор конденсаторов с первым электродом (37), который может быть приведен на первый потенциал, с вторым электродом (39), который расположен концентрично к первому электроду (37) и может быть приведен на второй...
Тип: Изобретение
Номер охранного документа: 0002567373
Дата охранного документа: 10.11.2015
Показаны записи 461-470 из 944.
10.09.2015
№216.013.79ef

Дугогасительная камера для силового выключателя, а также силовой выключатель с дугогасительной камерой

Дугогасительная камера для силового выключателя имеет первое и второе арматурные тела (1, 2), которые относительно продольной оси (3) камеры прилегают, каждое, на стороне конца к электрически изоляционному участку (8), который имеет по меньшей мере два чашевидных частичных участка...
Тип: Изобретение
Номер охранного документа: 0002562804
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79fa

Рельсовое транспортное средство с перекрытой поворотной тележкой

Изобретение относится железнодорожному транспорту. В рельсовом транспортном средстве, боковая поверхность которого в районе пола вырезана для размещения поворотной тележки с по меньшей мере боковыми перекрывающими элементами (VL), имитирующими движение поворотной тележки, между кузовом (W) и...
Тип: Изобретение
Номер охранного документа: 0002562815
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a4f

Горелка

Горелка выполнена с топливораспределительным кольцом, некоторым количеством топливных форсунок, смонтированных в направлении потока на топливораспределительном кольце, имеющем в направлении потока кольцеобразную поверхность. Топливораспределительное кольцо имеет обращенную к середине кольца...
Тип: Изобретение
Номер охранного документа: 0002562900
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a6b

Способ определения диаметра оснащенного рабочими лопатками ротора лопаточной машины

Изобретение касается способа определения диаметра оснащенного рабочими лопатками ротора лопаточной машины. Способ характеризуется тем, что предлагается приводить ротор, снабженный венцом рабочих лопаток, во вращательное движение и вне области венца рабочих лопаток расположить предусмотренное...
Тип: Изобретение
Номер охранного документа: 0002562928
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7a8e

Газонапорный выключатель нагрузки

Выключатель нагрузки имеет первый (4) и второй (5) контактные элементы, между которыми расположена зона электрической дуги, в которую впадает питающий канал (13), соединяющий зону электрической дуги с накопительным резервуаром (14) для горячего газа, который, в свою очередь, соединен с...
Тип: Изобретение
Номер охранного документа: 0002562963
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7acd

Инвертор для высоких напряжений

Изобретение относится к области электротехники. Для того чтобы предоставить субмодуль (7) для образования инвертора (1) для области высоких напряжений с первым субблоком (5), который содержит первый накопитель (18) энергии, включенное параллельно первому накопителю (18) энергии первое...
Тип: Изобретение
Номер охранного документа: 0002563034
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c99

Устройство для выделения ферромагнитных частиц из суспензии (варианты)

Группа изобретений относится к вариантам устройства для выделения ферромагнитных частиц из суспензии. По одному из вариантов устройство для выделения ферромагнитных частиц из суспензии содержит трубчатый реактор, имеющий вход и выход, и предназначенный для прохождения через него потока...
Тип: Изобретение
Номер охранного документа: 0002563494
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d00

Способ и устройство для оценки повреждения подшипников качения, в частности, в электрических машинах, питаемых через преобразователь частоты переменного тока

Изобретения относятся к измерительной технике, в частности к устройствам для оценки повреждения подшипника качения электрической машины. При реализации заявленного способа электрическая машина, содержащая контролируемый подшипник качения, электрически подключена к инвертору с промежуточным...
Тип: Изобретение
Номер охранного документа: 0002563597
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d07

Система датчиков для измерения крутящего момента и вал с системой датчиков для измерения крутящего момента

Изобретение относится к измерительной технике, в частности к системе датчиков для измерения крутящего момента и валу, снабженному системой датчиков. Система датчиков содержит датчик крутящего момента, который расположен на каретке с электроприводом, датчик расстояния, который расположен на той...
Тип: Изобретение
Номер охранного документа: 0002563604
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d51

Способ функционирования мельницы

Изобретение относится к способам управления работой мельниц и может быть использовано в устройствах для их контроля и регулирования. Способ заключается в том, что с помощью регулятора числа оборотов осуществляют управление приводом для корпуса мельницы, установленного с возможностью вращения,...
Тип: Изобретение
Номер охранного документа: 0002563678
Дата охранного документа: 20.09.2015
+ добавить свой РИД