×
20.06.2013
216.012.4d10

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИНЫ

Вид РИД

Изобретение

№ охранного документа
0002485310
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины. Техническим результатом является исследование добывающей скважины со спущенным неработоспособным штанговым глубинным насосом. Способ включает термометрию и гамма-каротаж скважины с записью фонового значения естественной радиоактивности пород и фонового распределения температуры по стволу скважины, возмущающее воздействие, повторную термометрию и гамма-каротаж с записью значений и данных расходомера, сравнение данных. Термометрию и гамма-каротаж проводят по межтрубному пространству скважины, возмущающее воздействие выполняют снижением уровня жидкости в скважине закачкой инертного газа в межтрубное пространство при давлении, не превышающем максимально допустимое давление на эксплуатационную колонну, с вытеснением жидкости в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию, стравливанием избыточного давления до атмосферного, при повторном проведении термометрии и гамма-каротаже производят подъем геофизического прибора на 50-100 м выше кровли верхнего интервала перфорации со скоростью 180-200 м/ч с одновременной записью расхода жидкости скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры, после прохождения прибором 50-100 м выше кровли верхнего интервала перфорации ведут запись только термометром со скоростью 400-600 м/ч, при выявлении температурных аномалий, отличающихся от значений температур при контрольной записи по стволу скважины, производят уточнение и детализацию данных интервалов проведением комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью 180-200 м/ч с замером 30-40 точек в исследуемом интервале, после проведения записи по всему стволу скважины проводят повторный спуск прибора, повторную запись температуры, производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером с замером 30-40 точек, после дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что при повторном спуске.
Основные результаты: Способ исследования скважины, включающий термометрию и гамма-каротаж скважины с записью фонового значения естественной радиоактивности пород и фонового распределения температуры по стволу скважины, возмущающее воздействие, повторную термометрию и гамма-каротаж с записью значений и данных расходомера, сравнение данных, отличающийся тем, что термометрию и гамма-каротаж проводят по межтрубному пространству скважины, возмущающее воздействие выполняют снижением уровня жидкости в скважине закачкой инертного газа в межтрубное пространство при давлении, не превышающем максимально допустимое давление на эксплуатационную колонну, с вытеснением жидкости в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию, стравливанием избыточного давления до атмосферного, при повторном проведении термометрии и гамма-каротаже производят подъем геофизического прибора на 50-100 м выше кровли верхнего интервала перфорации со скоростью 180-200 м/ч с одновременной записью расхода жидкости скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры, после прохождения прибором на 50-100 м выше кровли верхнего интервала перфорации ведут запись только термометром со скоростью 400-600 м/ч, при выявлении температурных аномалий, отличающихся от значений температур при контрольной записи по стволу скважины, производят уточнение и детализацию данных интервалов проведением комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью 180-200 м/ч с замером 30-40 точек в исследуемом интервале, после проведения записи по всему стволу скважины проводят повторный спуск прибора, повторную запись температуры, производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером с замером 30-40 точек, после дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что при повторном спуске.

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины.

Известен способ исследования скважины, который включает спуск в скважину на каротажном кабеле термометра с закрепленным выше термометра на каротажном кабеле электронагревателем, равномерный прогрев по всей длине ствола скважины в процессе подъема и одновременную регистрацию термограммы по стволу скважины. При этом спуск термометра с нагревателем осуществляют внутрь насосно-компрессорных труб с герметичным башмаком, предварительно спущенным ниже интервала фильтра на 3-5 м, со струйным насосом, закрепленным на насосно-компрессорных трубах выше интервала перфорации на 5-10 м, закачивают в насосно-компрессорные трубы рабочую жидкость и откачивают из межтрубного пространства смесь рабочей и добываемой жидкости, регистрируют термограмму в интервале перфорации и по изменению температуры в интервале перфорации определяют профиль притока жидкости в ствол скважины (Патент РФ №2194855, опубл. 20.12.2002).

Наиболее близким к предложенному изобретению по технической сущности является способ исследования скважины, согласно которому скважину оборудуют колонной насосно-компрессорных труб с воронкой на нижнем конце. Башмак колонны насосно-компрессорных труб размещают выше кровли интервала перфорации на 10-30 м. Перед проведением исследований проводят эксплуатацию скважины с закачкой рабочего агента, используемого при разработке нефтяной залежи, по колонне насосно-компрессорных труб в течение 3 и более суток. Останавливают скважину. Проводят технологическую выдержку в течение 1-2 суток. Проводят термометрию и гамма-каротаж скважины по колонне насосно-компрессорных труб с записью фонового значения естественной радиоактивности пород и фонового распределения температуры по стволу скважины. Закачивают первый возмущающий объем воды в пласт через колонну насосно-компрессорных труб или межтрубное пространство. При прокачке возмущающего объема воды неоднократно перемещают приборы от забоя скважины до интервала, расположенного на 40-60 м выше башмака колонны насосно-компрессорных труб, на разных скоростных режимах и фиксируют показания расходомера. Закачку останавливают и проводят повторную термометрию скважины от забоя до устья с записью текущего распределения температуры по стволу скважины. После повторной термометрии возобновляют закачку воды и в процессе закачки воды поднимают приборы до устья скважины с регистрацией показаний термометра и расходомера. Закачивают второй возмущающий объем и производят запись термограммы закачки по всему стволу скважины через 5-10 минут после остановки. После закачки второго возмущающего объема воды и термометрии спускают приборы в интервал продуктивного пласта, закачивают третий возмущающий объем воды с одновременным проведением как минимум одного замера термометрии в интервале продуктивного пласта и после остановки закачки третьего возмущающего объема проводят термометрию со снятием не менее двух термограмм в интервале продуктивного пласта от забоя и на 50 м выше продуктивного пласта для определения заколонной циркуляции. Анализируют полученные данные. После анализа полученной информации проводят детализацию температурных измерений на участке ствола скважины с выявленными температурными аномалиями. В выявленных интервалах проводят дополнительные исследования для подтверждения или опровержения наличия температурных аномалий, для уточнения интервалов температурных аномалий. Для определения интервалов ствола скважины, в которых имеет место горизонтальное движение подземных вод, дополнительно прокачивают возмущающий объем воды, прекращают закачку и производят термометрию в интервале от устья скважины до интервала, перекрывающего зону активного движения подземных вод, через 5-10 мин, через 30 мин, через 60 мин и через 3 часа после прекращения закачки. В случае наличия температурных аномалий исследования заканчивают. При отсутствии температурных аномалий продолжают проведение термометрии до достижения температуры воды в стволе скважины, равной температуре окружающих пород (Патент РФ №2384698, опубл. 20.03.2010 - прототип).

Общими недостатками известных способов являются невозможность проведения геофизических исследований добывающих скважин по межтрубному пространству со спущенными неработоспособными штанговыми глубинными насосами.

В предложенном изобретении решается задача исследования добывающей скважины со спущенными неработоспособными штанговыми глубинными насосами.

Задача решается тем, что в способе исследования скважины, включающем термометрию и гамма-каротаж скважины с записью фонового значения естественной радиоактивности пород и фонового распределения температуры по стволу скважины, возмущающее воздействие, повторную термометрию и гамма-каротаж с записью значений и данных расходомера, сравнение данных, согласно изобретению термометрию и гамма-каротаж проводят по межтрубному пространству скважины, возмущающее воздействие выполняют снижением уровня жидкости в скважине закачкой инертного газа в межтрубное пространство при давлении, не превышающем максимально-допустимое давление на эксплуатационную колонну, с вытеснением жидкости в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию, стравливанием избыточного давления до атмосферного, при повторном проведении термометрии и гамма-каротаже производят подъем геофизического прибора на 50-100 м выше кровли верхнего интервала перфорации со скоростью 180-200 м/ч с одновременной записью расхода жидкости скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры, после прохождения прибором на 50-100 м выше кровли верхнего интервала перфорации ведут запись только термометром со скоростью 400-600 м/ч, при выявлении температурных аномалий, отличающихся от значений температур при контрольной записи по стволу скважины, производят уточнение и детализацию данных интервалов проведением комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью 180-200 м/ч с замером 30-40 точек в исследуемом интервале, после проведения записи по всему стволу скважины проводят повторный спуск прибора, повторную запись температуры, производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером с замером 30-40 точек, после дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что при повторном спуске.

Сущность изобретения

Информация о техническом состоянии обсадных колонн и работе пластов является необходимой для контроля за разработкой месторождения. Однако проведение геофизических исследований добывающих скважин по межтрубному пространству со спущенными неработоспособными штанговыми глубинными насосами осложнено отсутствием возможности создания депрессии на пласт.

Большое количество добывающих скважин с неработоспособными штанговыми глубинными насосами находятся в бездействующем фонде. Для перевода скважин данной категории в действующий фонд (при наличии невыработанных запасов нефти) требуется проведение подземного или капитального ремонта. Однако для принятия правильного решения о целесообразности проведения ремонта и составления эффективных геолого-технических мероприятий зачастую требуется проведение геофизических исследований скважин, дающих необходимую информацию о техническом состоянии эксплуатационных колонн и работе пластов. Как правило, для этого используются методы термометрии, механической дебитометрии и термокондуктивной дебитометрии.

Сложность проведения геофизических исследований скважин по межтрубному пространству и получения достоверных результатов заключается в создании депрессии на пласт (снижение уровня жидкости в затрубном пространстве), при наличии в скважине спущенного неработоспособного штангового глубинного насоса, В настоящее время для исследования данной категории скважин предусматривается проведение подземного или капитального ремонта. Для экономии материальных и трудовых ресурсов предлагается способ геофизических исследований добывающих скважин с неработоспособными штанговыми глубинными насосами без подхода бригады подземного или капитального ремонта скважин. Суть данного способа заключается в проведении геофизических исследований скважин по межтрубному пространству с использованием передвижной азотной компрессорной станции ТГА -10/251 или СДА10/251 для создания необходимой депрессии на пласт. Результатом использования данного метода геофизических исследований добывающих скважин с неработоспособными штанговыми глубинными насосами является получение необходимой информации о техническом состоянии эксплуатационных колонн и работе пластов, что позволит принять правильное решение о целесообразности проведения ремонта и составлении эффективных геолого-технических мероприятий.

Способ выполняют следующим образом.

1. Спускоподъемные операции проводят по межтрубному пространству (кольцевой зазор между внутренней стенкой эксплуатационной колонны диаметром 146 мм или 168 мм и колонной насосно-компрессорных труб диаметром 73 мм) через отверстие в эксцентричной планшайбе устьевой арматуры добывающей скважины.

2. Спуск геофизического многофункционального прибора СОВА-С3-28Т-60 в комплексе с цифровым расходомером турбинным СОВА-СЗРЦ-28 (диаметр 28 мм, общая длина 2070 мм) осуществляют на трехжильном геофизическом кабеле КГ3-3-60-200-МФ Е01 (диаметр 10,2 мм) до забоя скважины со скоростью 400-600 м/ч. Назначение меньшей скорости существенно затягивает процесс исследования скважины, назначение большей скорости приводит к потере точности определений.

При спуске геофизического прибора проводят контрольную (фоновую) запись температуры термометром сопротивления по стволу скважины для оценки технического состояния эксплуатационной колонны, а также запись естественного гамма-излучения горных пород (интегральный гамма-каротаж) для привязки полученных геофизических данных к глубине.

3. После контрольной записи температуры проводят снижение уровня жидкости в скважине (создание депрессии на пласт) путем закачки инертного газа (азота) в межтрубное пространство передвижной азотной компрессорной станции ТГА-10/251 или СДА-10/251 при давлении, не превышающем максимально допустимое давление на эксплуатационную колонну.

4. Жидкость, находящаяся в стволе скважины, вытесняется инертным газом (азотом) в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию и нефтепровод (желобную емкость, цистерну).

5. После снижения уровня жидкости в межтрубном пространстве скважины (создания депрессии на пласт) проводят стравливание избыточного давления до атмосферного.

6. Производят подъем геофизического прибора на 50-100 м выше кровли верхнего интервала перфорации со скоростью 180-200 м/ч с одновременной записью расхода жидкости (дебита) скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры термометром сопротивления для выявления интервалов притоков из пластов и/или нарушений эксплуатационной колонны, а также для выделения интервалов заколонных перетоков, т.е. источников обводнения. Интервал скоростей определен исходя из получения необходимой точности определений. Интервал подъема геофизического прибора на 50-100 м обусловлен тем, что при подъеме менее 50 м выявление нарушений становится проблематичным, а более 100 м - нерациональным.

После прохождения прибором на 50-100 м выше кровли верхнего интервала перфорации проводят запись только термометром сопротивления со скоростью 400-600 м/ч. Назначение меньшей скорости существенно затягивает процесс исследования скважины, назначение большей скорости приводит к потере точности определений. При выявлении температурных аномалий, отличающихся от значений температур при контрольной записи по стволу скважины, производят уточнение и детализацию данных интервалов притока (источников обводнения) путем проведения комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью 180-200 м/ч. Для детализации выявленного интервала замеры механическим дебитомером составляют 30-40 точек в исследуемом интервале. Выбор количества точек определен необходимым и достаточным для детализации интервала. После проведения записи по всему стволу скважины проводят повторный спуск геофизического прибора.

7. При спуске проводят повторную запись температуры термометром сопротивления для выявления и уточнения интервалов притоков из нарушений эксплуатационной колонны и/или из пластов, а также для выделения интервалов заколонных перетоков. При наличии притоков и/или перетоков термометр фиксирует изменения значений температуры по сравнению с контрольной (фоновой) записью, т.е. температурные аномалии, возникающие в процессе дроссельного эффекта. Разность температур повторных записей относительно контрольной записи свидетельствует о наличии притоков, перетоков из данного интервала пласта и/или места нарушения эксплуатационной колонны. Для подтверждения и уточнения интервалов притока производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером. Замер механическим дебитомером составляет не менее 30 точек.

8. После дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что и при повторном спуске, т.е. выделяют и уточняют интервалы притоков и перетоков. Сравнивают полученные кривые и выявляют отклонения в температуре и наличие расхода жидкости. На основании полученных результатов исследований о техническом состоянии эксплуатационной колонны и работе пластов принимают решение о целесообразности проведения подземного или капитального ремонта, а также планируют эффективные геолого-технические мероприятия по проведению водоизоляционных работ и ремонтно-изоляционных работ для ввода скважины из бездействия и получения дополнительной добычи нефти.

Пример конкретного выполнения

Выполняют исследования нефтедобывающей скважины, вскрывшей продуктивный пласт на глубине 1747-1759 м. Скважина обсажена эксплуатационной колонной диаметром 168 мм, в скважине на колонне насосно-компрессоных труб диаметром 73 мм подвешен глубинный штанговый насос, вышедший из строя. Скважина была в эксплуатации 52 года. В скважине вероятны нарушения эксплуатационной колонны, возможны заколонные перетоки. Для выяснения целесообразности проведения ремонтных работ предполагается оценить наличие нарушений эксплуатационной колонны и наличие заколонных перетоков. Для этого проводят спускоподъемные операции глубинных приборов по межтрубному пространству скважины. Используют геофизический многофункциональный прибор СОВА-С3-28Т-60 в комплексе с цифровым расходомером турбинным СОВА-СЗРЦ-28. Приборы спускают на трехжильном геофизическом кабеле КГ3-3-60-200-МФ Е01 до забоя скважины. При спуске поддерживают скорость спуска в пределах 400-600 м/ч. При спуске геофизического прибора проводят контрольную (фоновую) запись температуры термометром сопротивления по стволу скважины для оценки технического состояния эксплуатационной колонны, а также запись естественного гамма-излучения горных пород (интегральный гамма-каротаж) для привязки полученных геофизических данных к глубине. После контрольной записи температуры проводят снижение уровня жидкости в скважине путем закачки азота в межтрубное пространство передвижной азотной компрессорной станции ТГА-10/251 при давлении, равном 9 МПа. Жидкость, находящаяся в стволе скважины, вытесняется азотом в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию и желобную емкость. После снижения уровня жидкости в межтрубном пространстве скважины до 710 м от устья проводят стравливание избыточного давления до атмосферного. Производят подъем геофизического прибора на 75 м выше кровли верхнего интервала перфорации (исследования показали, что результат не меняется в пределах от 50 до 100 м) со скоростью, поддерживаемой в пределах 180-200 м/ч, с одновременной записью расхода жидкости (дебита) скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры термометром сопротивления для выявления интервалов притоков из пластов и/или нарушений эксплуатационной колонны, а также для выделения интервалов заколонных перетоков, т.е. источников обводнения. После прохождения прибором на 75 м выше кровли верхнего интервала перфорации проводят запись только термометром сопротивления со скоростью, поддерживаемой в пределах 400-600 м/ч.

Выявляют температурные аномалии в интервалах глубин 1747-1750 м. Производят уточнение и детализацию данных интервалов притока путем проведения комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью, поддерживаемой в пределах 180-200 м/ч. Для детализации выявленного интервала замеры механическим дебитомером составляют не менее 30 точек в исследуемых интервалах. После проведения записи по всему стволу скважины проводят повторный спуск геофизического прибора. При спуске проводят повторную запись температуры термометром сопротивления для выявления и уточнения интервалов притоков из нарушений эксплуатационной колонны и/или из пластов, а также для выделения интервалов заколонных перетоков. Термометр фиксирует изменения значений температуры по сравнению с контрольной (фоновой) записью, т.е. температурные аномалии, возникающие в процессе дроссельного эффекта. Разность температур повторных записей относительно контрольной записи свидетельствует о наличии притоков, перетоков из данного интервала пласта и/или места нарушения эксплуатационной колонны. Для подтверждения и уточнения интервалов притока производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером. Замер механическим дебитомером составляет не менее 30 точек. После дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что и при повторном спуске, т.е. выделяют и уточняют интервалы притоков и перетоков.

Полученные результаты исследований о техническом состоянии эксплуатационной колонны и работе пластов свидетельствуют о множественных нарушениях и множественных заколонных перетоках. Исходя из того, что дебит скважины низкий, а запасы нефти в околоскважинной зоне незначительны, принимают решение о нецелесообразности проведения подземного или капитального ремонта и ликвидации скважины.

Применение предложенного способа позволит проводить исследования добывающей скважины со спущенными неработоспособными штанговыми глубинными насосами.

Способ исследования скважины, включающий термометрию и гамма-каротаж скважины с записью фонового значения естественной радиоактивности пород и фонового распределения температуры по стволу скважины, возмущающее воздействие, повторную термометрию и гамма-каротаж с записью значений и данных расходомера, сравнение данных, отличающийся тем, что термометрию и гамма-каротаж проводят по межтрубному пространству скважины, возмущающее воздействие выполняют снижением уровня жидкости в скважине закачкой инертного газа в межтрубное пространство при давлении, не превышающем максимально допустимое давление на эксплуатационную колонну, с вытеснением жидкости в колонну насосно-компрессорных труб через клапаны штангового насоса и далее в выкидную линию, стравливанием избыточного давления до атмосферного, при повторном проведении термометрии и гамма-каротаже производят подъем геофизического прибора на 50-100 м выше кровли верхнего интервала перфорации со скоростью 180-200 м/ч с одновременной записью расхода жидкости скважинным термокондуктивным дебитомером, интенсивности гамма-излучения пород и температуры, после прохождения прибором на 50-100 м выше кровли верхнего интервала перфорации ведут запись только термометром со скоростью 400-600 м/ч, при выявлении температурных аномалий, отличающихся от значений температур при контрольной записи по стволу скважины, производят уточнение и детализацию данных интервалов проведением комплексной записи скважинным термокондуктивным дебитомером и механическим дебитомером со скоростью 180-200 м/ч с замером 30-40 точек в исследуемом интервале, после проведения записи по всему стволу скважины проводят повторный спуск прибора, повторную запись температуры, производят комплексную запись скважинным термокондуктивным дебитомером и механическим дебитомером с замером 30-40 точек, после дохождения до забоя скважины геофизический прибор поднимают, в процессе чего проводят те же записи термометром, скважинным термокондуктивным дебитомером и механическим дебитомером, что при повторном спуске.
Источник поступления информации: Роспатент

Показаны записи 331-340 из 569.
01.03.2019
№219.016.cce3

Способ сооружения и эксплуатации паронагнетательной скважины

Изобретение относится к нефтяной промышленности, в частности к области добычи нефти тепловыми методами, и может быть использовано для нагнетания теплоносителя в продуктивный пласт. Способ включает строительство скважины, обсаженной колонной обсадных труб, спуск в нее колонны...
Тип: Изобретение
Номер охранного документа: 0002339809
Дата охранного документа: 27.11.2008
01.03.2019
№219.016.cd13

Способ подготовки сероводородсодержащей нефти

Изобретение относится к нефтедобывающей промышленности, в частности к способам подготовки сероводородсодержащей нефти для транспортирования и разделения. Способ включает многоступенчатую сепарацию исходной нефти, последующее обезвоживание и обессоливание, отдувку углеводородным газом в...
Тип: Изобретение
Номер охранного документа: 0002305123
Дата охранного документа: 27.08.2007
01.03.2019
№219.016.cd64

Глубинно-насосная установка для подъема продукции по эксплуатационной колонне скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации добывающих скважин, в том числе с высоковязкой продукцией, а также в скважинах малого диаметра. Глубинно-насосная установка включает штанговый насос, содержащий цилиндр, приемный клапан, плунжер с...
Тип: Изобретение
Номер охранного документа: 0002361115
Дата охранного документа: 10.07.2009
01.03.2019
№219.016.ce3c

Способ строительства скважин многопластового нефтяного месторождения

Изобретение относится к нефтяной промышленности, в частности к строительству нефтяных и газовых скважин. Способ строительства скважины многопластового нефтяного месторождения включает бурение скважины до проектной глубины со вскрытием неоднородных пластов пашийского горизонта, геофизические...
Тип: Изобретение
Номер охранного документа: 0002427703
Дата охранного документа: 27.08.2011
01.03.2019
№219.016.cf00

Способ гидроразрыва пласта

Изобретение относится к нефтяной промышленности и может найти применение при гидравлическом разрыве пласта. Обеспечивает повышение успешности проведения гидроразрыва. Сущность изобретения: способ включает предварительную закачку материала в пласт и проведение гидроразрыва пласта. Согласно...
Тип: Изобретение
Номер охранного документа: 0002459947
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf5c

Способ исследования горизонтальной скважины

Изобретение относится к нефтяной промышленности и может быть использовано при исследованиях горизонтальных скважин. Техническим результатом изобретения является повышение оперативности исследований. Для этого размещают в скважине колонны труб с заглушенным с торца перфорированным участком в...
Тип: Изобретение
Номер охранного документа: 0002406822
Дата охранного документа: 20.12.2010
01.03.2019
№219.016.cfa7

Способ строительства скважины

Изобретение относится к нефтяной промышленности и может найти применение при проходке бурением интервалов пластов с неустойчивыми горными породами. При строительстве скважины проводят бурение и крепление направления, кондуктора и промежуточной или эксплуатационной колонны. При бурении...
Тип: Изобретение
Номер охранного документа: 0002439274
Дата охранного документа: 10.01.2012
01.03.2019
№219.016.cfab

Способ строительства куста скважин

Изобретение относится к нефтяной промышленности и может найти применение при строительстве куста скважин. При строительстве куста скважин проводят заложение устьев добывающих и нагнетательных скважин в виде куста или батареи, бурение в массиве горных пород и крепление стволов вертикальных,...
Тип: Изобретение
Номер охранного документа: 0002439273
Дата охранного документа: 10.01.2012
01.03.2019
№219.016.cfff

Способ очистки сточной воды методом сепарации

Изобретение относится к нефтяной промышленности и может найти применение при очистке высокосернистых нефтегазосодержащих сточных вод от эмульгированной нефти, нефтепродуктов и твердых взвешенных частиц. Сточную воду из первого отстойника 1 подают во второй дополнительный отстойник 2,...
Тип: Изобретение
Номер охранного документа: 0002446109
Дата охранного документа: 27.03.2012
01.03.2019
№219.016.d003

Способ транспортирования высокообводненной продукции скважин нефтяного месторождения

Изобретение относится к нефтяной и газовой промышленности и применяется при транспортировке высокообводненной продукции скважин нефтяных месторождений с помощью дожимных насосных станций (ДНС) на объекты подготовки нефти. Проводят заполнение резервуаров и периодическую откачку жидкости из...
Тип: Изобретение
Номер охранного документа: 0002446317
Дата охранного документа: 27.03.2012
Показаны записи 331-340 из 386.
29.03.2019
№219.016.ef9d

Способ сбора и подготовки дренажной воды

Изобретение относится к нефтяной промышленности и может найти применение при подготовке нефтяной эмульсии на установках подготовки нефти. Обеспечивает повышение эффективности разделения водонефтяной эмульсии на ступени предварительного обезвоживания на нефть и воду, стабилизации работы ступеней...
Тип: Изобретение
Номер охранного документа: 0002291960
Дата охранного документа: 20.01.2007
29.03.2019
№219.016.f21d

Способ исследования скважины

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважины. Техническим результатом изобретения является повышение достоверности обнаружения нарушений сплошности эксплуатационной колонны скважины, определения заколонных перетоков и горизонтальных движений...
Тип: Изобретение
Номер охранного документа: 0002384698
Дата охранного документа: 20.03.2010
29.03.2019
№219.016.f32a

Устройство для одновременно-раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин как для раздельной выработки пластов, так и для одновременной. Обеспечивает возможность избирательного перемещения клапанных втулок за один спуск механизма управления в...
Тип: Изобретение
Номер охранного документа: 0002339796
Дата охранного документа: 27.11.2008
29.03.2019
№219.016.f333

Устройство для одновременно-раздельной эксплуатации многопластовой скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при эксплуатации многопластовых скважин как для раздельной выработки пластов, так и для одновременной. Обеспечивает возможность избирательного перемещения клапанных втулок за один спуск механизма управления в...
Тип: Изобретение
Номер охранного документа: 0002339797
Дата охранного документа: 27.11.2008
29.03.2019
№219.016.f39b

Входное устройство скважинного насоса

Изобретение относится к нефтедобывающей промышленности и может быть использовано при добыче обводненной нефти для снижения темпов образования высоковязкой водонефтяной эмульсии в колонне лифтовых труб путем организации поочередной подачи нефти и воды на прием скважинного насоса. Входное...
Тип: Изобретение
Номер охранного документа: 0002300666
Дата охранного документа: 10.06.2007
04.04.2019
№219.016.fc96

Способ защиты от сероводородной коррозии кровли резервуара системы сбора и подготовки продукции скважин

Изобретение относится к нефтяной промышленности и может найти применение при защите от сероводородной коррозии резервуаров системы сбора и подготовки продукции скважин. При осуществлении способа организуют подачу в газовое пространство резервуара расчетного количества углеводородного газа, не...
Тип: Изобретение
Номер охранного документа: 0002414587
Дата охранного документа: 20.03.2011
10.04.2019
№219.017.0063

Насосная установка для одновременной раздельной эксплуатации двух пластов в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к скважинным насосным установкам. Обеспечивает возможность раздельного замера дебита каждого пласта и раздельного промыслового сбора продукции пластов при необходимости, а также возможность исследования каждого пласта в...
Тип: Изобретение
Номер охранного документа: 0002291953
Дата охранного документа: 20.01.2007
10.04.2019
№219.017.038b

Самоустанавливающийся клапан глубинного насоса

Изобретение относится к насосной технике и может быть использовано в конструкциях насосов, работающих в наклонных или горизонтальных скважинах. Клапан включает корпус, седло, держатель седла, шар и груз, установленный с возможностью контактирования с шаром. В корпусе с одной стороны соосно с...
Тип: Изобретение
Номер охранного документа: 0002382904
Дата охранного документа: 27.02.2010
10.04.2019
№219.017.0446

Установка для одновременно-раздельной эксплуатации пластов в скважине

Предложение относится к нефтедобывающей промышленности, в частности к скважинным установкам для одновременно-раздельной эксплуатации нескольких объектов. Обеспечивает упрощение конструкции при эксплуатации объектов электропогружным насосом. Сущность изобретения: установка включает...
Тип: Изобретение
Номер охранного документа: 0002371570
Дата охранного документа: 27.10.2009
10.04.2019
№219.017.098c

Устройство для очистки скважины

Изобретение относится к нефтяной промышленности и может найти применение при очистке скважины. Устройство включает размещенные на колонне насосно-компрессорных труб ерш и фильтр и расположенный внутри колонны насосно-компрессорных труб в интервале над фильтром обратный клапан. Фильтр выполнен в...
Тип: Изобретение
Номер охранного документа: 0002467159
Дата охранного документа: 20.11.2012
+ добавить свой РИД