×
20.06.2013
216.012.4cb4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5 мм/час и скоростью вращения кристалла 15-19 мин. Способ позволяет получать кристаллы, прозрачные в видимом диапазоне начиная с длины волны 352 нм. 3 ил., 4 пр.
Основные результаты: Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.

Изобретение относится к области выращивания кристаллов из расплава. Вольфрамат натрия висмута NaBi(WO4)2 - перспективный материал для Черенковских детекторов.

Известен способ получения кристаллов NaBi(WO4)2 методом Чохральского [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] - прототип, в котором кристаллы выращивают в воздушной среде, из платиновых тиглей, со скоростью вытягивания 4-5 мм/час при скорости вращения 30-32 мин-1. По этому способу получены нелегированные кристаллы NaBi(WO4)2, а также кристаллы, легированные индием.

Основной недостаток способа-прототипа состоит в том, что нелегированные кристаллы NaBi(WO4)2 практически непрозрачны в диапазоне длин волн 352-380 нм, что снижает эффективность их применения в Черенковских детекторах. При выращивании кристаллов по способу-прототипу, для обеспечения прозрачности в указанном диапазоне, NaBi(WO4)2 необходимо легировать индием, что усложняет процесс.

На Фиг.1 представлены опубликованные авторами способа-прототипа [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] спектры светопропускания нелегированного NaBi(WO4)2, а также кристалла, легированного индием. Из спектров на Фиг.1 видно, что нелегированный кристалл NaBi(WO4)2 прозрачен в видимом диапазоне начиная с длины волны 380 нм, а легированный индием - начиная с длины волны 352 нм.

Задачей данного изобретения является упрощение процесса получения кристаллов NaBi(WO4)2, прозрачных в диапазоне длин волн 352-380 нм.

Эта задача решается в предлагаемом способе в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/час за счет выращивания нелегированных кристаллов NaBi(WO4)2 со скоростью вращения 15-19 мин-1.

На фиг.2 показаны кристалл NaBi(WO4)2, выращенный по предлагаемому способу (слева), и заготовка твердотельного элемента Черепковского детектора из такого кристалла (справа).

На фиг.3 представлен спектр светопропускания кристалла NaBi(WO4)2, выращенного по предлагаемому способу. Видно, что материал прозрачен в видимом диапазоне начиная с волнового числа 28400 см-1, что соответствует длине волны 352 нм.

Таким образом, получен нелегированный NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Достигнутый результат может быть объяснен следующим образом. При выращивании NaBi(WO4)2 с высокими скоростями вытягивания и вращения, в кристаллах, как правильно отмечено авторами способа-прототипа, образуются точечные дефекты, а именно вакансии вольфрама и атомы висмута, занимающие места атомов натрия в решетке (см. [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.4]). Эти дефекты обуславливают появление глубоких энергетических уровней в запрещенной зоне NaBi(WO4)2, вызывающих интенсивное поглощение света в диапазоне длин волн 350-420 нм и, как следствие, непрозрачность кристаллов в диапазоне длин волн 352-380 нм. В способе-прототипе прозрачность кристаллов в диапазоне длин волн 352-380 нм достигается за счет компенсации глубоких уровней при введении примеси индия. В предлагаемом способе, за счет снижения скорости вращения кристалла, существенно снижается концентрация точечных дефектов в NaBi(WO4)2, что позволяет получать нелегированные кристаллы, прозрачные в диапазоне длин волн 352-380 нм. Исключение легирования упрощает технологический процесс.

Предлагаемый интервал скорости вращения выбран экспериментально. При скорости выше 19 мин-1 значительно возрастает концентрация точечных дефектов в кристаллах, и, как следствие, NaBi(WO4)2 интенсивно поглощает свет с длинами волн 352-380 нм. При скоростях вращения ниже 15 мин-1 выращивание качественного NaBi(WO4)2 неосуществимо, так как в этом случае механизм роста сменяется на дендритный и в кристаллах образуется множество структурных макродефектов, что делает невозможным применение NaBi(WO4)2 в Черенковских детекторах.

Пример 1

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 14 мин-1. Получить качественный NaBi(WO4)2 не удается из-за дендритного механизма роста кристалла.

Пример 2

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 15 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 3

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 19 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 4

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 20 мин-1. Получен кристалл NaBi(WO4)2, практически полностью поглощающий свет в диапазоне длин волн 352-380 нм, т.е. непрозрачный в данном диапазоне.

Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
Источник поступления информации: Роспатент

Показаны записи 81-90 из 94.
20.04.2023
№223.018.4d09

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах

Устройство для измерения малых токов инжектированных зарядов в конденсированных средах предназначено для измерения малых токов ~ 10 А и регистрации их изменения во времени, а также записи результатов измерения на электронный носитель. Устройство содержит преобразователь ток-напряжение,...
Тип: Изобретение
Номер охранного документа: 0002754201
Дата охранного документа: 30.08.2021
20.04.2023
№223.018.4d26

Устройство для получения наночастиц из газов и паров жидкостей при сверхнизких температурах

Изобретение относится к области нанотехнологии, а именно предлагаемое устройство позволяет получать частицы малых размеров (наночастицы) из материалов, которые существуют при комнатных температурах в виде газов или паров. Устройство для получения наночастиц из материалов, существующих при...
Тип: Изобретение
Номер охранного документа: 0002756051
Дата охранного документа: 24.09.2021
21.04.2023
№223.018.4fc4

Способ синтеза шпинели ganbse

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNbSe из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле. Твердофазную...
Тип: Изобретение
Номер охранного документа: 0002745973
Дата охранного документа: 05.04.2021
21.04.2023
№223.018.5010

Датчик измерения механических напряжений на основе микропроводов с положительной магнитострикцией

Изобретение относится к измерительной технике и выполняет функцию датчика механических напряжений. Датчик состоит из аморфного ферромагнитного микропровода с положительной магнитострикцией, размещенного по оси дифференциальной измерительной катушки, и внешней катушки, задающей переменное...
Тип: Изобретение
Номер охранного документа: 0002746765
Дата охранного документа: 20.04.2021
23.04.2023
№223.018.51d2

Композиция с углеродными нанотрубками для получения углеродной заготовки для высокоплотной sic/c/si керамики и способ получения изделий из sic/c/si керамики

Композиция и способ изобретения относятся к получению изделий из высокоплотной карбидокремниевой SiC/C/Si керамики для различных отраслей промышленности. Технический результат состоит в увеличении глубины силицирования углеродных заготовок, увеличении размеров изделий из силицированых графитов,...
Тип: Изобретение
Номер охранного документа: 0002730092
Дата охранного документа: 17.08.2020
24.04.2023
№223.018.5275

Способ получения изделий из карбидокремниевой керамики

Способ изобретения относится к области получения карбидокремниевых керамических изделий, в том числе крупногабаритных, обладающих повышенными эксплуатационными характеристиками, в том числе при высоких температурах для применения в различных областях промышленности. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002740984
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.55c8

Способ получения композиционных материалов на основе углеволокна и металла

Изобретение относится к технологии получения новых композиционных материалов с углеволокном и может быть использовано, в частности, для изготовления элементов конструкций в авиационной, ракетно-космической и морской технике. Способ получения композиционного материала, содержащего углеволокно и...
Тип: Изобретение
Номер охранного документа: 0002731699
Дата охранного документа: 08.09.2020
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c25

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c26

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
Показаны записи 71-71 из 71.
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД