×
20.06.2013
216.012.4c7c

ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002485162
Дата охранного документа
20.06.2013
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к новым комплексным соединениям редкоземельных элементов, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов, оптико-электронных устройств, а также флуоресцентных меток и маркеров. Предложено люминесцирующее анионное комплексное соединение редкоземельных элементов формулы , где Ln - ион трехвалентного редкоземельного элемента; L - дикетонатный лиганд-производное 3-полифторалкил-1-пиразолил-1,3-пропандиона формулы +
Реферат Свернуть Развернуть

Изобретение относится к новому классу 1,3-дикетонатных производных редкоземельных элементов (РЗЭ), которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов (OLED), оптико-электронных устройств, а также флуоресцентных меток и маркеров.

Ближайшими аналогами предложенных соединений РЗЭ можно считать известные комплексные соединения, включающие в качестве дикетонатного лиганда 4-трифторацилпиразолоны [1-2].

Получают данные известные соединения путем взаимодействия исходного 4-ацилпиразолона с солью редкоземельного элемента и гидроксидом щелочного металла (или органическим основанием) в среде водного спирта с последующей кристаллизацией малорастворимого продукта.

Например, для получения известного [3] комплексного анионного соединения тербия с 1-фенил-3-метил-4-трифторацетилпиразол-5-оном, несущего в качестве противоиона ион тетрабутиламмония, растворяют 1,5 ммоль пиразолона, 1.5 ммоль КОН и 0.3 ммоль иодида тетрабутиламмония в этаноле, после чего добавляют раствор 0.3 ммоль Tb(NO3)3*6Н2О в 50% водном этаноле, кипятят 3 часа, охлаждают и отделяют малорастворимый продукт путем фильтрования.

В данных известных соединениях дикетонный фрагмент является частью сопряженной системы пиразолона, что ограничивает возможность варьирования структуры с целью получения оптимальных люминесцентных (квантовый выход, интенсивность люминесценции) и технологически важных (термическая стабильность, пленкообразующая способность, растворимость и летучесть в вакууме) свойств.

Задачей, решаемой изобретением, является создание новых комплексных анионных соединений РЗЭ, обладающих высокой интенсивностью люминесценции и заданными технологическими параметрами, такими как термическая стабильность, пленкообразующая способность, растворимость и летучесть в вакууме, что, в свою очередь, обеспечивает возможность их применения в оптико-электронных устройствах.

Для достижения поставленной задачи в качестве люминесцирующих анионных комплексных соединений РЗЭ в настоящей заявке предложены комплексные соединения следующего строения:

где Ln - ион трехвалентного редкоземельного элемента, например Nd, Pr, Sm, Eu, Tb, Dy, Но, Tm, Er, Yb; L1 -дикетонатный лиганд, являющийся производным 3-((поли)фторалкил)-1-(пиразолил)-1,3-пропандиона общей формулы 2

где R1 - алкильный, фторалкильный, арильный, циклоалкильный или гетероциклический заместитель, R2 - атом водорода, алкильный, фторалкильный, арильный, циклоалкильный или гетероциклический заместитель, атом галогена, CF3 или NO2-группа, причем сопряжение дикетонного фрагмента может осуществляться по положениям 3, 4 или 5 пиразольного цикла, RF - CH2F, CHF2, CF3-группы, частично или полностью фторированный алкильный, циклоалкильный или арильный заместитель.

М+ - одновалентный катион щелочного металла, например Li, K, Na, Rb, Cs, ион NH4+, остаток четвертичного аммониевого основания, например +N(Me)4, +N(Et)4, +N(Bu)4, катион пиридиния или катион вторичного амина, например пиперидиния или пирролидиния, или третичного амина, например триэтиламмония или триметиламмония.

В отличие от известных соединений РЗЭ в соединениях общей формулы 1 дикетонный фрагмент не является частью сопряженной системы пиразола и может быть введен в любое возможное положение (а не только в С4) пиразольного цикла, что позволяет в широких пределах варьировать электронные и стерические свойства данного лиганда.

Введение акцепторных фторированных групп существенно, так как приводит к нарушению симметрии распределения электронной плотности как в молекуле исходного лиганда, так и в комплексах с РЗЭ, что, в свою очередь, улучшает передачу энергии внутри комплекса и, как следствие, повышает эффективность и квантовый выход люминесценции.

Авторам неизвестны примеры синтеза анионных комплексных соединений редкоземельных элементов со фторированными пиразолсодержащими 1,3-дикетонами. Методом рентгеноструктурного анализа показана идентичность структуры свободного лиганда со структурой лиганда в составе комплексного соединения.

Введение в качестве дикетонной компоненты производных пиразола формулы 2 позволяет повысить интенсивность люминесценции комплексных соединений по сравнению с известными, а также варьировать в широких пределах такие практически значимые характеристики комплексов, как растворимость, пленкообразующая способность, термическая стабильность и летучесть в вакууме.

Синтез фторированных дикетонов был осуществлен методом, описанным в работе [4]. Данный метод позволяет синтезировать соединения, содержащие дикетонный фрагмент в положении С(3), С(4) или С(5) пиразольного цикла. Некоторые из указанных дикетонов также доступны коммерчески (например, поставляются компанией Art-Chem GmbH, Германия).

Синтез комплексных соединений общей формулы 1 осуществляют следующим образом: К раствору фторированного дикетона в этиловом спирте при повышенной температуре (предпочтительно 30-35°С) добавляют последовательно 1-3 М водный раствор гидроксида щелочного металла, или гидроксида четвертичного аммониевого основания, или смесь соли четвертичного основания с эквивалентным количеством гидроксида щелочного металла, или 1-10 М раствор аммиака, вторичного или третичного амина, взятый в эквивалентном (по молям) количестве по отношению к дикетону, и водный раствор соли редкоземельного элемента, взятой в соотношении 1 моль РЗЭ на 4 моля дикетона, причем взаимодействие компонентов осуществляют в течение 12-24 часов при температуре 35-45°С в герметично закрытых контейнерах.

Использование герметически закрытого контейнера является существенным, так как в этом случае не требуется восполнять потерю на испарение растворителя и летучих компонентов, таких как амины. Кроме того, при использовании в качестве основания аминов использование закрытого контейнера позволяет существенно уменьшить побочные процессы, происходящие из-за окисления реагентов кислородом воздуха.

Для выделения конечных продуктов реакционную массу упаривают досуха, остаток экстрагируют полярным органическим растворителем, например этанолом, метанолом, пропанолом-2 или тетрагидрофураном или смесью этих растворителей с хлороформом или дихлорметаном, полученный раствор фильтруют и концентрируют. Комплексное соединение выделяют путем осаждения из полученного раствора посредством медленного добавления подходящего растворителя, например пентана, гексана, гептана, бензола или диэтилового эфира, в результате чего комплексное соединение осаждается в твердом виде.

Альтернативный путь выделения может заключаться в упаривании досуха сконцентрированного раствора комплексного соединения в полярном органическом растворителе и перекристаллизации остатка из подходящего растворителя (этанола, метанола, ацетонитрила, хлороформа, дихлорметана или их смесей).

Указанный температурный режим является оптимальным для проведения данного синтеза и позволяет добиться полной конверсии исходных материалов в конечные продукты за указанный промежуток времени. При более высоких температурах или продолжительном (более 24 часов) времени взаимодействия реагентов происходит образование побочных продуктов. При низких температурах (менее 30°С) время реакции значительно удлиняется по сравнению с указанным и снижается полнота образования конечных продуктов.

Спектральные данные, иллюстрирующие люминесцентные характеристики синтезированных соединений при фотовозбуждении, представлены на фиг.1-3.

Фиг.1 иллюстрирует идентичность спектров люминесценции пленки из метилметакрилата (кривая 1), содержащей рубидия (тетракис-(1-(1,5-диметил-1H-пиразол-4-ил)-4,4,4-трифторбутан-1,3-дионо)европиат(III) и твердого образца (кривая 2) этого комплекса (λвозб.=380 нм)

На фиг.2 приведен спектр люминесценции твердого образца тетрабутиламмония (тетракис-(1-(1,3-диметил-1H-пиразол-5-ил)-4,4-дифторбутан-1,3-дионо)тербиата(III) (λвозб.=350 нм)

На Фиг.3 приведен спектр люминесценции твердого образца цезия (тетракис-(1-(1,3-диметил-1H-пиразол-4-ил)-4,4-дифторбутан-1,3-дионо)европиата (III) (λвозб.=380 нм).

Пример 1

Рубидия (тетракис-(1-(1,5-диметил-1H-пиразол-4-ил)-4,4,4-трифторбутан-1,3-дионо)европиат(III)

В 15 мл этанола при нагревании до 30-35°С растворяют 0.964 г (4 ммоль) 1-(1,5-диметил-1H-пиразоли-4-ил)-4,4,4-трифторбутан-1,3-диона (Art-Chem GmbH, Германия) и добавляют 4 мл (4 ммоль) 1М водного раствора RbOH. Центрифугируют 5 минут при 5000 об/мин, раствор переносят в стеклянный контейнер и добавляют по каплям раствор 0.445 г (1 ммоль) Eu(NO3)3*6Н2О (99,9% Aldrich, США) в 5 мл воды при интенсивном перемешивании. Устанавливают рН 7 путем добавления нескольких капель уксусной кислоты, закрывают контейнер и выдерживают в термостате при +40°С 24 часа, после чего охлаждают до комнатной температуры. Растворитель отгоняют, сухой остаток экстрагируют 30 мл абсолютного этанола, фильтруют, упаривают до начала кристаллизации. Осадок отделяют и сушат в вакууме. Белый микрокристаллический порошок. Выход 0.85 г (76%).

Найдено (%): С, 36.81; Н, 2.75; N, 9.61; Eu, 12.91; F, 19.61. Вычислено для C36H32EuF12N8O8Rb (%): С, 36.95; Н, 2.76; N, 9.58; Eu, 12.99; F, 19.48

Пленку на стеклянную подложку наносили методом центрифугирования (spin-coating), используя в качестве связующего 2% раствор метилметакрилата в ТГФ, содержащий 0.1% комплекса. Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=380 нм, длина волны в максимуме спектра люминесценции 620 нм.

Пример 2

Тетрабутиламмония (тетракис-(1-(1,3-диметил-1H-пиразол-5-ил)-4,4-дифторбутан-1,3-дионо)тербиат(III)

Получают аналогично Примеру 1 из 0.86 г (4 ммоль) 1-(1,3-диметил-1H-пиразол-5-ил)-4,4-дифторбутан-1,3-диона 0.453 г (1 ммоль) Tb(NO3)3*6Н2О и 3М водного раствора гидроксида тетрабутиламмония. Белый микрокристаллический порошок. Выход 0.87 г (68%). Найдено (%): С, 48.83; Н, 5.72; N, 6.12; Tb, 12.23; F, 13.73. Вычислено для C52H71F8N9O8Tb(%): (%): С, 48.79; Н, 5.59; N, 9.85; Tb, 12.42; F, 13.36.

Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=350 нм, длина волны в максимуме спектра люминесценции 550 нм.

Пример 3

Цезия (тетракис-(1-(1,3-диметил-1H-пиразол-4-ил)-4,4-дифторбутан-1,3-дионо)европиат(III))

Получают аналогично Примеру 2 из 0.445 г (1 ммоль) Eu(NO3)3*6Н2О и 1М раствора CsOH. Белый микрокристаллический порошок. Выход 0.95 г (83%). Найдено (%): С, 37.92; Н, 3.33; F, 13.51; N, 10.08; Eu, 13.49. Вычислено для C36H36CsEuF8N8O8 (%): С, 37.74; Н, 3.17; F, 13.27; N, 9.78; Eu, 13.27.

Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=380 нм, длина волны в максимуме спектра люминесценции 620 нм.

Пример 4

Пнридиния (тетракис-(1-[5-циклопропил-4-нитро-1-(2,2,2-трифторэтил)-1H-пиразол-3-ил]-3-(2,2-дифторциклопропил)-1,3-пропандионо)европиат(III)).

Получают аналогично Примеру 2 из 1.525 г (4 ммоль) 1-[5-циклопропил-4-нитро-1-(2,2,2-трифторэтил)-1H-пиразол-3-ил]-3-(2,2-дифторциклопропил)-1,3-пропандиона, 0.445 г (1 ммоль) Eu(NO3)3*6Н2О и 5М водного раствора пиридина.

Оранжевый кристаллический порошок. Выход 0.86 г (49%). Найдено (%): С, 41.96; Н, 3.02; F, 21.92; N, 10.35; Eu, 8.79. Вычислено для C61H49E11F20N13O16 (%): С, 41.82; Н, 2.82; F, 21.69; N, 10.39; Eu, 8.67.

Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=405 нм, длина волны в максимуме спектра люминесценции 623 нм.

Пример 5

Пирролидиния (тетракис-(1-[4-хлор-1-циклопентил-3-(трифторметил)-1H-пиразол-5-ил]-3-(2,3,4,5,6-пентафторфенил)-1,3-пропандионо)европиат(III)).

Получают аналогично Примеру 2 из 1.900 г (4 ммоль) 1-[4-хлор-1-циклопентил-3-(трифторметил)-1H-пиразол-5-ил]-3-(2,3,4,5,6-пентафторфенил)-1,3-пропандиона, 0.445 г (1 ммоль) Eu(NO3)3*6H2O и 5М водного раствора пирролидина.

Темно-желтый микрокристаллический порошок. Выход 0.76 г (36%). Найдено (%): С, 43.23; Н, 2.41; F, 28.81; N, 5.87; Eu, 7.23. Вычислено для C76H49Cl4EuF32N9O8 (%): С, 43.10; Н, 2.33; F, 28.70; N, 5.95; Eu, 7.17.

Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=400 нм, длина волны в максимуме спектра люминесценции 621 нм.

Пример 6

Триметиламмония (тетракис-(1-[1,4-дифенил-3-(2,2,2-трифторэтил)-1H-пиразол-5-ил]-4,4,4-трифтор-1,3-бутандионо)эрбиат(III)).

Получают аналогично Примеру 2 из 1.761 г (4 ммоль) 1-[1,4-дифенил-3-(2,2,2-трифторэтил)-1H-пиразол-5-ил]-4,4,4-трифтор-1,3-бутандиона, 0.363 г (1 ммоль) ErCl3*5Н2О и 5М водного раствора триметиламина.

Желтоватый микрокристаллический порошок. Выход 1.05 г (53%). Найдено (%): С, 52.77; Н, 3.21; F, 23.09; N, 6.61; Er, 8.49. Вычислено для C87H62ErF24N9O8 (%): С, 52.65; Н, 3.15; F, 22.97; N, 6.35; Er, 8.43.

Люминесценция в пленке и твердом виде характеризуется следующими значениями: λмах возб.=385 нм, длина волны в максимуме спектра люминесценции 1551 нм.

Пример 7

Аммония (тетракис-4,4,4-трифтор-1-[3-(2-тиенил)-1-(2-тиенилметил)-1H-пиразол-4-ил]-1,3-бутандионо)европиат(III)).

Получают аналогично Примеру 2 из 1.538 г (4 ммоль) 4,4,4-трифтор-1-[3-(2-тиенил)-1-(2-тиенилметил)-1H-пиразол-4-ил]-1,3-бутандиона, 0.445 г (1 ммоль) Eu(NO3)3*6Н2О и 10М водного раствора аммиака.

Белый микрокристаллический порошок. Выход 1.10 г (64%). Найдено (%):С, 45.21; Н, 2.68; F, 13.40; N, 7.53; Eu, 8.97. Вычислено для C64H44EuF12N9O8S8 (%): С, 45.12; Н, 2.60; F, 13.38; N, 7.40; Eu, 8.92.

Люминесценция в растворе, пленке и твердом виде характеризуется следующими значениями: λмах возб.=385 нм, длина волны в максимуме спектра люминесценции 622 нм.

Пример 8

В соединении Примера 1 замена CF3-группы на метальную группу (при использовании нефторированного аналога - 1-(1,5-диметил-1H-пиразол-4-ил)-бутан-1,3-диона в качестве исходного соединения) привела к уменьшению интенсивности люминесценции на длине волны 620 нм в восемнадцать раз.

Нами впервые установлено, что синтезированные комплексы РЗЭ с пиразолсодержащими 1,3-дикетонами имеют выраженные интенсивные полосы люминесценции в видимой или ближней инфракрасной области спектра, причем вид спектров практически не отличается для соединения в твердой фазе, растворах и для пленки на стекле или другом прозрачном материале, полученные методом центрифугирования или погружения.

Эти результаты свидетельствуют о том, что при выполнении технологических операций, таких как растворение, осаждение, испарение растворителя, не происходит разложения комплексов или изменения их спектральных свойств, что открывает возможность использования этих комплексов в технологических процессах изготовления электролюминесцентных приборов на их основе.

Источники информации

1. S.V.Eliseeva, J.-C.G.Bünzli. Chem. Soc. Rev. 2010. V.39. Р.189.

2. F.Marchetti, С.Pettinari, R.Pettinari. Coord. Chem. Rev. 2005. V.249. P.2909.

3. C.Pettinari, F.Marchetti, R.Pettinari, A.Drozdov, S.Troyanov, A.I.Voloshin, N.M.Shavaleev J. Chem. Soc. Dalton Trans. 2002. P.1409.

4. Тайдаков И.В, Красносельский С.С. Модифицированный метод синтеза изомерных N-замещенных (1H-пиразолил)пропан-1,3-дионов. Химия Гетероциклических Соединений. 2011, №6. С.843.


ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
ЛЮМИНЕСЦИРУЮЩИЕ АНИОННЫЕ КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ СО ФТОРИРОВАННЫМИ ПИРАЗОЛСОДЕРЖАЩИМИ 1,3-ДИКЕТОНАМИ И СПОСОБ ИХ ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 15.
20.01.2013
№216.012.1cc9

Универсальный способ селективного извлечения солей переходных, редкоземельных и актиноидных элементов из многокомпонентных растворов с помощью нанопористых материалов

Группа изобретениий относится к области производства переходных, редкоземельных и актиноидных металлов и их солей. Способ включает селективное извлечение солей в объемах нанопор нанопористых электропроводящих материалов за счет эффекта электростатического взаимодействия дипольных моментов...
Тип: Изобретение
Номер охранного документа: 0002472863
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.24c0

Получение однородности газового разряда

Изобретение относится к электронной технике, в частности к технике газоразрядных приборов. Заявленное изобретение характеризуется использованием шины, имеющей малые индуктивность и электрическое сопротивление и расположенной вблизи объема с газовым разрядом, в качестве источника магнитного...
Тип: Изобретение
Номер охранного документа: 0002474910
Дата охранного документа: 10.02.2013
20.06.2013
№216.012.4c7d

Люминесцирующие комлексные соединения редкоземельных элементов с пиразолсодержащими фторированными 1,3-дикетонами и способ их получения

Изобретение относится к новым комплексным соединениям редкоземельных элементов, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов, оптико-электронных устройств, а также флуоресцентных меток и маркеров. Предложено люминесцирующее комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002485163
Дата охранного документа: 20.06.2013
10.01.2014
№216.012.9528

Способ трубопроводного транспорта многофазной многокомпонентной смеси

Изобретение относится к трубопроводному транспорту углеводородных газожидкостных смесей, в частности к способу сбора и трубопроводного транспорта многофазной продукции скважин. Способ включает замер, отбор на анализ поступившей из скважин углеводородной газожидкостной смеси и подачу в поток...
Тип: Изобретение
Номер охранного документа: 0002503878
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9fff

Квантово-точечный светоизлучающий органический диод

Изобретение может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике....
Тип: Изобретение
Номер охранного документа: 0002506667
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.af75

Способ изготовления резистивных масок для нанолитографии

Изобретение относится к области фотолитографии, а именно к способу изготовления резистивных масок для нанолитографии. Способ включает восстановление серебра с образованием наночастиц серебра и последующую стимуляцию процесса термической полимеризации капролактама на поверхности полученных...
Тип: Изобретение
Номер охранного документа: 0002510632
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44a

Способ определения координат места порыва подводного трубопровода

Изобретение относится, преимущественно, к нефтяной и газовой промышленности и, в частности, к области трубопроводного транспорта углеводородов. В поврежденный трубопровод закачивают раствор пенообразующего вещества на пресной или морской воде с образованием устойчивой грубодисперсной газовой...
Тип: Изобретение
Номер охранного документа: 0002511873
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c72f

Устройство для очистки внутренней поверхности трубопровода

Изобретение относится к устройствам, применяемым при периодической очистке внутренней поверхности магистральных газонефтепроводов от пристенных отложений высокомолекулярных углеводородов, уменьшающих проходное сечение трубопроводов и снижающих их производительность. Устройство для очистки...
Тип: Изобретение
Номер охранного документа: 0002516750
Дата охранного документа: 20.05.2014
27.08.2014
№216.012.eedc

Способ получения наночастиц серебра с модифицированной лигандной оболочкой в высокоывязкой матрице

Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения оптоэлектронных свойств ансамблей покрытых лигандной оболочкой наночастиц серебра в вязких средах и пленках. Изобретение может быть использовано для создания фотонных кристаллов, оптических фильтров и...
Тип: Изобретение
Номер охранного документа: 0002526967
Дата охранного документа: 27.08.2014
20.03.2016
№216.014.c986

Способ синтеза 4a,5b,10,12-тетраазаиндено[2,1-b]флуорена

Изобретение относится к области органической химии, а именно к способу получения 4а,5b,10,12-тетраазаиндено[2,1-b]флуорена, заключающемуся в том, что взаимодействие пиридина с 1,5-дихлор-2,4-динитробензолом проводят при температуре 20°C в ацетоне и мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002577543
Дата охранного документа: 20.03.2016
Показаны записи 1-10 из 22.
20.01.2013
№216.012.1cc9

Универсальный способ селективного извлечения солей переходных, редкоземельных и актиноидных элементов из многокомпонентных растворов с помощью нанопористых материалов

Группа изобретениий относится к области производства переходных, редкоземельных и актиноидных металлов и их солей. Способ включает селективное извлечение солей в объемах нанопор нанопористых электропроводящих материалов за счет эффекта электростатического взаимодействия дипольных моментов...
Тип: Изобретение
Номер охранного документа: 0002472863
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.24c0

Получение однородности газового разряда

Изобретение относится к электронной технике, в частности к технике газоразрядных приборов. Заявленное изобретение характеризуется использованием шины, имеющей малые индуктивность и электрическое сопротивление и расположенной вблизи объема с газовым разрядом, в качестве источника магнитного...
Тип: Изобретение
Номер охранного документа: 0002474910
Дата охранного документа: 10.02.2013
20.06.2013
№216.012.4c7d

Люминесцирующие комлексные соединения редкоземельных элементов с пиразолсодержащими фторированными 1,3-дикетонами и способ их получения

Изобретение относится к новым комплексным соединениям редкоземельных элементов, которые могут быть использованы в качестве активных слоев органических светоизлучающих диодов, оптико-электронных устройств, а также флуоресцентных меток и маркеров. Предложено люминесцирующее комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002485163
Дата охранного документа: 20.06.2013
10.01.2014
№216.012.9528

Способ трубопроводного транспорта многофазной многокомпонентной смеси

Изобретение относится к трубопроводному транспорту углеводородных газожидкостных смесей, в частности к способу сбора и трубопроводного транспорта многофазной продукции скважин. Способ включает замер, отбор на анализ поступившей из скважин углеводородной газожидкостной смеси и подачу в поток...
Тип: Изобретение
Номер охранного документа: 0002503878
Дата охранного документа: 10.01.2014
10.02.2014
№216.012.9fff

Квантово-точечный светоизлучающий органический диод

Изобретение может быть использовано при создании эффективных устройств для отображения алфавитно-цифровой и графической информации. Актуальность создания алфавитно-цифровых дисплеев нового поколения обусловлена растущим потоком визуальной информации и прогрессом в компьютерной технике....
Тип: Изобретение
Номер охранного документа: 0002506667
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.af75

Способ изготовления резистивных масок для нанолитографии

Изобретение относится к области фотолитографии, а именно к способу изготовления резистивных масок для нанолитографии. Способ включает восстановление серебра с образованием наночастиц серебра и последующую стимуляцию процесса термической полимеризации капролактама на поверхности полученных...
Тип: Изобретение
Номер охранного документа: 0002510632
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44a

Способ определения координат места порыва подводного трубопровода

Изобретение относится, преимущественно, к нефтяной и газовой промышленности и, в частности, к области трубопроводного транспорта углеводородов. В поврежденный трубопровод закачивают раствор пенообразующего вещества на пресной или морской воде с образованием устойчивой грубодисперсной газовой...
Тип: Изобретение
Номер охранного документа: 0002511873
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c72f

Устройство для очистки внутренней поверхности трубопровода

Изобретение относится к устройствам, применяемым при периодической очистке внутренней поверхности магистральных газонефтепроводов от пристенных отложений высокомолекулярных углеводородов, уменьшающих проходное сечение трубопроводов и снижающих их производительность. Устройство для очистки...
Тип: Изобретение
Номер охранного документа: 0002516750
Дата охранного документа: 20.05.2014
20.03.2016
№216.014.c986

Способ синтеза 4a,5b,10,12-тетраазаиндено[2,1-b]флуорена

Изобретение относится к области органической химии, а именно к способу получения 4а,5b,10,12-тетраазаиндено[2,1-b]флуорена, заключающемуся в том, что взаимодействие пиридина с 1,5-дихлор-2,4-динитробензолом проводят при температуре 20°C в ацетоне и мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002577543
Дата охранного документа: 20.03.2016
29.12.2017
№217.015.fc37

Способ определения содержания ингибитора трипсина в соевом жмыхе или шроте и устройство для его осуществления

Группа изобретений относится к сельскому хозяйству, а именно к контролю качества кормов с содержанием сои для крупного рогатого скота, свиней и птицы. Для этого используют спектрально-люминесцентный метод, который заключается в облучении соевого жмыха или шрота, облучают УФ с длиной волны 365...
Тип: Изобретение
Номер охранного документа: 0002638792
Дата охранного документа: 15.12.2017
+ добавить свой РИД