×
20.06.2013
216.012.4c32

Результат интеллектуальной деятельности: СПОСОБ ПРЯМОЙ КОНВЕРСИИ НИЗШИХ ПАРАФИНОВ C-C В ОКСИГЕНАТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения синтетического бензина и других моторных топлив. Способ заключается в пропускании смеси, состоящей из низшего парафина и либо кислорода, разбавленного инертным газом, либо воздуха, либо чистого кислорода, через слой катализатора при температуре не более 350°С. При этом в качестве катализатора применяют каталитическую систему для гетерогенных реакций, включающую микроволокна высокококремнеземистого носителя и, по крайней мере, один активный элемент, при этом активный элемент выполняют либо в виде MeOHal композита, либо в виде EMeOHal композита, при этом элемент Me обоих композитов выбран из группы, включающей переходные металлы 5-12 групп, 4 и 5 периодов, либо из группы элементов лантана и лантаноидов, но, преимущественно, рутений; элемент Hal один из галогенов: фтор, хлор, бром, йод, но, преимущественно, хлор; элемент Е композита ЕМеОНаl выбран из группы, включающей щелочные, щелочноземельные элементы, либо водород, а индексы w, z, x и у представляют собой массовые весовые доли элементов в данных композитах и могут меняться в следующих диапазонах: z - от 0.12 до 0.80, x - от 0.013 до 0.34, y - от 0.14 до 0.74, w - от 0 до 0.50. Предлагаемый способ позволяет достигнуть высокой степени превращения исходных реагентов и высокой селективности образования спиртов. 3 з.п. ф-лы, 15 пр.

Изобретение относится к области химии, а именно к технологии производства оксигенатов (спиртов и альдегидов), прямой газофазной каталитической конверсией исходного газа, содержащего легкие углеводороды. Получаемые оксигенаты являются ценными промежуточными продуктами органического синтеза, могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения синтетического бензина и других моторных топлив.

Известен ряд способов получения метанола из метана. В промышленности широкое применение нашел метод паровой конверсии метана в синтез-газ с последующим его каталитическим превращением в метанол. Однако данный метод требует очень сложного оборудования, высокой чистоты подаваемого газа и очень больших энергозатрат на получение синтез-газа и его очистку. Поэтому в настоящее время наибольший интерес представляют способы прямой конверсии метана в метанол, минуя стадию получения синтез-газа.

Известны способы получения метанола, основанные на раздельной подаче последовательно сжатого и нагретого углеводородсодержащего газа и сжатого кислородсодержащего газа в смесительные зоны реакторов при начальной температуре до 500°С и давлении до 10 МПа без участия катализатора (РФ №2162460, С07С 31/04, B01J 12/00, 27.01.2001, РФ №2282612, С07С 27/12, 27.08.2006). Причем в известных способах при температуре проведения процесса 400-450°С и давлении 8-10 МПа преимущественно получают метанол, а при температуре процесса 450°С и давлении 2-5 МПа получают метанол с содержанием формальдегида до 25 мас.%

Недостатком известных технических решений является высокая температура и давление при проведении процесса, не очень высокая селективность и низкая степень конверсии метана. При этом значительная часть подаваемого кислорода расходуется на окисление в СО2, что приводит к еще большему снижению степени конверсии метана и перегреву реакционной смеси.

Известен способ получения метанола, включающий раздельную подачу в смесительную зону реактора нагретого углеводородсодержащего газа с давлением 8 МПа и сжатого воздуха при температуре 390-490°С с использованием двухслойного катализатора, причем первый слой представляет собой металлсодержащий катализатор, выбранный из группы никель, кобальт, железо, а второй слой состоит из оксида металла, выбранного из группы Mg, Zn, Ba, Zr (РФ №2233831, С07С 31/04, B01J 19/24, 10.08.2004).

Недостатком известного способа является высокая температура и давление при проведении процесса, не очень высокая селективность и низкая степень конверсии метана.

Известен способ прямого окисления природного и попутного нефтяного газа в формальдегид с использованием молибденциркониевого катализатора, нанесенного на силикагель при температуре 650°С (РФ №2089286, B01J 23/28, С07С 47/048, 10.09.1997).

Недостатком известного способа является высокая температура проведения процесса, низкая селективность и низкая степень конверсии метана.

Известен способ каталитической конверсии низших алканов в спирт, альдегид или их смесь, с применением катализатора, представляющего собой комплекс платины, нанесенный на оксид алюминия, либо оксид титана, либо оксид кремния, либо оксид циркония, либо оксид молибдена (РФ №2372318, С07С 27/14, 10.11.2009).

Недостатками известного способа являются технологические сложности, связанные с формованием катализатора, и очень низкая степень конверсии исходного алкана.

Наиболее близкий к предлагаемому нами способ каталитической конверсии низших парафинов C14 в оксигенаты заключается в окислении метана воздухом при температурах 350-450°С и давлении 4,5-6 МПа с использованием оксиднохромового (0,1-1 мас.% хрома) катализатора, нанесенного на различные носители: оксиды кремния, алюминия, титана, циркония, магния или их смеси (Пат. Канады №2097413, С07С 031/02, С07С 029/50, 1993-12-30). В данном способе достигается селективность образования метанола 37% при конверсии метана 5,1%.

Недостатками известного способа являются технологические сложности, связанные с формованием катализатора, высокое давление и температура проведения процесса при не очень высокой селективности образования метанола.

Задачей данного изобретения являлась разработка эффективного способа получения оксигенагов, таких как спирты и альдегиды, демонстрирующего высокую степень конверсии исходных реагентов и высокую селективность образования спирта, особенно при низких температурах (Т≤350°С).

Поставленная задача решается тем, что в заявляемом способе прямой конверсии низших парафинов (C14) в оксигенагы, при котором пропускают при температуре не более 350°С смесь, состоящую из низшего парафина и либо кислорода, разбавленного инертным газом, либо воздуха, либо чистого кислорода, через слой катализатора, в качестве катализатора используют каталитическую систему для гетерогенных реакций, включающую микроволокна высокококремнеземистого носителя и, по крайней мере, один активный элемент, при этом активный элемент выполняют либо в виде MeOxHaly композита, либо в виде EwMezOxHaly композита. При этом элемент Me обоих композитов выбран из группы, включающей переходные металлы 5-12 групп, 4 и 5 периодов, либо из группы элементов лантана и лантаноидов, но, преимущественно, рутений; элемент Hal один из галогенов: фтор, хлор, бром, йод, но, преимущественно, хлор; элемент Е композита EwMezOxHaly выбран из группы, включающей щелочные, щелочноземельные элементы, либо водород, а индексы w, z, х и у представляют собой массовые доли элементов в данных композитах и могут меняться в следующих диапазонах: z - от 0.12 до 0.80, х - от 0.013 до 034, у - от 0.14 до 0.74, у - от 0 до 0.50.

Кроме того, микроволокна высококремнеземистого носителя структурируют в виде нетканого либо прессованного материала типа ваты и войлока, или в виде нитей диаметром 0,5-5,0 мм, или в виде тканей из нитей с плетением типа сатин, полотно, ажур с диаметром ячеек 0,5-5,0 мм. Причем выбирают микроволокна высокококремнеземистого волокнистого носителя, которые характеризуются наличием в инфракрасном спектре полосы поглощения гидроксильных групп с волновым числом ν=3620-3650 см-1 и полушириной 65-75 см-1, имеющего удельную поверхность, измеренную методом БЭТ по тепловой десорбции аргона, SAr=0,5-30 м2/г, имеет величину поверхности, измеренную методом щелочного титрования, SNa=5-150 м2/г при соотношении SNa/SAr=5-50.

Высококремнеземистый волокнистый носитель содержит 50-98,8 мас.% SiO2 и, по крайней мере, один элемент, выбранный из группы, включающей щелочные, щелочноземельные, редкоземельные элементы, алюминий, молибден, титан, цирконий.

Технический эффект заявляемого способа заключается в том, что увеличивается степень превращения исходных реагентов и селективность образования спиртов. Таким образом, использование заявляемого катализатора позволяет повысить концентрацию целевого продукта в реакционной смеси. Применение более активного катализатора, по сравнению с используемым в известном способе, делает заявляемый способ более производительным и эффективным по сравнению с прототипом.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% метана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Каталитическая система представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде EwMezOxHaly композита, где в качестве элемента Me выбирают рутений в количестве 0,02 мас.% Ru, в качестве элемента Е выбран калий в количестве 0,015 мас.%, в качестве элемента Hal выбран хлор в количестве 0,035 мас.% и кислород в количестве 0,0016 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 85 SiO2, 14 ZrO2, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 49% при конверсии метана 7%.

В процессе, принятом за прототип, при температуре 418°С и давлении 5,5 МПа достигается селективность образования метанола 37% при конверсии метана 5,1%.

Пример 2

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% метана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде MezOxHaly композита, где в качестве элемента Me выбран рутений в количестве 0,02 мас.% Ru, в качестве элемента Hal выбран хлор в количестве 0,014 мас.% и кислород в количестве 0,003 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 85 SiQ2, 14 ZrO2, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 46% при конверсии метана 6,3%.

Пример 3

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% этана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде MezOxHaly композита, где в качестве элемента Me выбран кобальт в количестве 0,13 мас.%, в качестве элемента Hal выбран хлор в количестве 0,052 мас.% и кислород в количестве 0,035 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 84 SiO2, 14 ZrO2, 1 Na2O, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования этанола 18% при конверсии этана 12,1%.

Пример 4

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% метана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Катализатор представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде MezOxHaly композита, где в качестве элемента Me выбран рутений в количестве 0,02 мас.% Ru, в качестве элемента Hal выбран бром в количестве 0,032 мас.% и кислород в количестве 0,0032 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 85 SiO2, 14 ZrO2, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования формальдегида 12% при конверсии метана 5,4%.

Пример 5

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% метана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Каталитическая система представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде EwMezOxHaly композита, где в качестве элемента Me выбирают рутений в количестве 0,025 мас.% Ru, в качестве элемента Е выбран водород в количестве 0,0005 мас.%, в качестве элемента Hal выбран хлор в количестве 0,044 мас.% и кислород в количестве 0,002 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 85 SiO2, 14 ZrO2, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 21% при конверсии метана 3%.

Пример 6

Окисление метана производят, пропуская газовую смесь, содержащую 90 об.% метана, 10 об.% кислорода, при атмосферном давлении и температуре 350°С через каталитическую систему. Каталитическая система представляет собой геометрически структурированную систему, включающую микроволокна высокококремнеземистого носителя, выполненную в виде прессованного материала типа ваты, либо тканого материала, и содержащего активный компонент, выполненный в виде EwMezOxHaly композита, где в качестве элемента Me выбирают рутений в количестве 0,02 мас.% Ru, в качестве элемента Е выбран калий в количестве 0,015 мас.%, в качестве элемента Hal выбран хлор в количестве 0,035 мас.% и кислород в количестве 0,0016 мас.%. Высококремнеземистый волокнистый носитель содержит, мас.%: 96 SiO2, 2 Al2O3, 1 Na2O, остальное - примеси. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 46% при конверсии метана 6%.

Пример 7

Аналогичен примеру 5 за исключением того, что высококремнеземистый волокнистый носитель содержит 85% SiO2, 11,6% Zr, 0,34% Al, 0,050% Na, 0,13% К, 0,30% Са, 0,021% Rb, 0,036% Ti, 0,073% Y, 0,0027% Mn, 0,072% Fe.

Пример 8

Аналогичен примеру 5 за исключением того, что активный компонент выполнен в виде EwMezOxHaly композита, где в качестве элемента Me выбирают ванадий в количестве 0,021% вес., в качестве элемента Е выбран цезий в количестве 0,10 мас.%, в качестве элемента Hal выбран хлор в количестве 0,028 мас.% и кислород в количестве 0,006 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 31% при конверсии метана 3,3%.

Пример 9

Аналогичен примеру 5 за исключением того, что активный компонент выполнен в виде EwMezOxHaly композита, где в качестве элемента Me выбирают хром в количестве 0,019 мас.%, в качестве элемента Е выбран калий в количестве 0,014 мас.%, в качестве элемента Hal выбран хлор в количестве 0,018 мас.% и кислород в количестве 0,013 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 37% при конверсии метана 2,6%.

Пример 10

Аналогичен примеру 2 за исключением того, что активный компонент выполнен в виде MezOxHaly композита, где в качестве элемента Me выбрано серебро в количестве 0,022 мас.%, в качестве элемента Hal выбран йод в количестве 0,024 мас.% и кислород в количестве 0,009 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 30% при конверсии метана 3,1%.

Пример 11

Аналогичен примеру 2 за исключением того, что активный компонент выполнен в виде MezOxHaly композита, где в качестве элемента Me выбран марганец в количестве 0,020 мас.%, в качестве элемента Hal выбран хлор в количестве 0,026 мас.% и кислород в количестве 0,011 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 11% при конверсии метана 2,6%.

Пример 12

Аналогичен примеру 5 за исключением того, что активный компонент выполнен в виде EwMezOxHaly композита, где в качестве элемента Me выбирают никель в количестве 0,023 мас.%, в качестве элемента Е выбран водород в количестве 0,0005 мас.%, в качестве элемента Hal выбран хлор в количестве 0,006 мас.% и кислород в количестве 0,008 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 28% при конверсии метана 2,2%.

Пример 13

Аналогичен примеру 5 за исключением того, что активный компонент выполнен в виде EwMezOxHaly композита, где в качестве элемента Me выбирают цинк в количестве 0,021 мас.%, в качестве элемента Е выбран водород в количестве 0,001 мас.%, в качестве элемента Hal выбран хлор в количестве 0,022 мас.% и кислород в количестве 0,010 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 32% при конверсии метана 2,5%.

Пример 14

Аналогичен примеру 2 за исключением того, что активный компонент выполнен в виде MezOxHaly композита, где в качестве элемента Me выбран лантан в количестве 0,019 мас.%, в качестве элемента Hal выбран хлор в количестве 0,005 мас.% и кислород в количестве 0,002 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 38% при конверсии метана 1,2%.

Пример 15

Аналогичен примеру 5 за исключением того, что активный компонент выполнен в виде EwMezOxHaly композита, где в качестве Me выбран ниобий в количестве 0,021 мас.%, в качестве элемента Е выбран калий в количестве 0,017 мас.%, в качестве элемента Hal выбран фтор в количестве 0,025 мас.% и кислород в количестве 0,003 мас.%. При температуре 350°С и объемной скорости подачи реакционной смеси 2500 ч-1 достигается селективность образования метанола 25% при конверсии метана 3,1%.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 101.
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.9003

Способ получения ванадиймагниевого катализатора полимеризации этилена и сополимеризации этилена с альфа-олефинами

Изобретение относится к области катализа. Описан способ получения катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами, содержащего соединение ванадия на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава...
Тип: Изобретение
Номер охранного документа: 0002502560
Дата охранного документа: 27.12.2013
Показаны записи 1-10 из 98.
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.9003

Способ получения ванадиймагниевого катализатора полимеризации этилена и сополимеризации этилена с альфа-олефинами

Изобретение относится к области катализа. Описан способ получения катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами, содержащего соединение ванадия на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава...
Тип: Изобретение
Номер охранного документа: 0002502560
Дата охранного документа: 27.12.2013
+ добавить свой РИД