×
20.06.2013
216.012.4bf6

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников. Способ включает периодические телеметрические измерения температур газа в герметичном контейнере и числа оборотов электродвигателя установленного в нем вентилятора. Давление газа в герметичном контейнере определяют по измеренным телеметрией температурам газа (с помощью датчиков) и указанному числу оборотов. При этом используют данные, полученные при предварительных автономных испытаниях вентилятора в виде зависимости числа его оборотов от давления прокачиваемого газа. Техническим результатом изобретения является повышение надежности прогнозирования нормального функционирования системы терморегулирования, а также снижение ее массы и энергопотребления. 3 ил.
Основные результаты: Способ контроля работы системы терморегулирования космического аппарата при его орбитальном функционировании, включающий периодические телеметрические измерения температур газа в герметичном контейнере и числа оборотов работающего электродвигателя установленного в нем вентилятора, отличающийся тем, что при указанном периодическом контроле величину давления газа в герметичном контейнере определяют по измеренному телеметрическому значению числа оборотов электродвигателя вентилятора, используя данные, полученные при предварительных автономных испытаниях вентилятора в виде зависимости величины числа оборотов электродвигателя вентилятора от величины давления прокачиваемого им газа, и сравнивают ее с допустимым значением.

Изобретение относится к космической технике, в частности к системам терморегулирования (СТР) телекоммуникационных спутников.

В процессе эксплуатации космического аппарата (КА) на орбите с целью диагностики и прогнозирования нормального функционирования, в частности, СТР проводят периодический контроль ее работы путем измерения показаний минимально возможного количества телеметрических датчиков, установленных на борту КА: например, в случае отвода избыточного тепла, выделяющегося при работе приборов, установленных в герметичном контейнере (СТР КА типа «Экспресс-А»), обдувом их имеющим необходимое рабочее давление газом, циркуляцию которого осуществляет вентилятор СТР, периодически измеряют показания телеметрических датчиков температуры, давления (абсолютного) газа и таходатчика (датчика частоты вращения вала), предусмотренного в составе электродвигателя вентилятора, и сравнивают с допустимыми значениями для данного момента времени, определяют величины скоростей (темпов) изменения их с течением времени и устанавливают работоспособность - нормальное функционирование СТР в данный момент и прогнозируют работоспособность СТР в процессе дальнейшей эксплуатации КА (см. патенты Российской Федерации (РФ) №2151721 [1], №2164884 [2]).

Таким образом, для диагностики и прогнозирования нормального функционирования вышеуказанного типа СТР на борту КА устанавливают три типа датчиков:

- датчики температуры;

- датчик давления;

- таходатчик (в составе вентилятора).

Анализ источников информации по патентной и научно-технической литературе показал, что наиболее близким по технической сути прототипом предлагаемого технического решения является способ контроля работы СТР КА на основе [1].

На фиг.1 изображена принципиальная схема реализации вышеуказанного известного технического решения, где: 1 - космический аппарат (КА); 2 - герметичный контейнер, заполненный газом (например, азотом) с определенным рабочим давлением (абсолютным), в котором установлены: приборы 3, вентилятор 4 (резервированный), радиатор 5 (например, газожидкостный радиатор), датчики температуры 6.1-6.4, таходатчик 7 (измеритель числа оборотов вала электродвигателя вентилятора, на котором установлена его крыльчатка), датчик давления 9; 8 - система телеметрии; 2.1 - газовод герметичного контейнера; 2.2 - теплоизоляция герметичного контейнера.

Известный способ контроля работы СТР на основе [1] включает в себя телеметрические измерения значений:

- температуры газа в районе установки различных приборов (по показаниям датчиков температур);

- давления газа в герметичном контейнере (по показанию датчика давления);

- числа оборотов работающей крыльчатки вентилятора по показанию таходатчика, установленного в составе электродвигателя (на валу которого установлена крыльчатка вентилятора).

Анализ опыта эксплуатации таких СТР показал, что в случае работоспособности всех вышеуказанных типов телеметрических датчиков обеспечивается достоверный контроль работы нормального функционирования вышеуказанной СТР, т.е. по телеметрическим измерениям вышеуказанных параметров всегда возможно установить величину теплоотводящей способности СТР при допустимых рабочих температурах приборов и омывающего их газа, которая должна быть не ниже требуемой величины.

Анализ также показал, что в случае отказа датчика давления газа (при работоспособности всех остальных элементов СТР) не представляется возможным прогнозировать нормальное функционирование СТР, т.к. теплоотводящая способность СТР зависит также от величины давления газа: чем ниже давление газа, тем ниже теплоотводящая способность вышеуказанной СТР при прочих равных условиях.

Кроме того, наличие датчика давления газа увеличивает массу СТР (например, на ≈ 0,4 кг) и энергопотребление (например, на 1,4 Вт).

Таким образом, как следует из вышеизложенного, существенными недостатками известного способа контроля работы СТР являются:

- недостаточно высокая надежность обеспечения прогнозирования нормального функционирования СТР;

- повышенная масса и энергопотребление СТР из-за применения на борту датчика давления газа.

Целью предлагаемого авторами технического решения является устранение вышеуказанных существенных недостатков.

Поставленная цель достигается тем, что при контроле работы СТР КА при его орбитальном функционировании осуществляют периодические телеметрические измерения температур газа в герметичном контейнере, числа оборотов работающего электродвигателя установленного в нем вентилятора, при этом величину давления газа в герметичном контейнере определяют по измеренному телеметрическому значению числа оборотов электродвигателя вентилятора, используя данные, полученные при предварительных автономных испытаниях вентилятора в виде зависимости величины числа оборотов электродвигателя вентилятора от величины давления прокачиваемого им газа, и сравнивают ее с допустимым значением, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено, и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе контроля работы СТР КА.

На фиг.2 изображена принципиальная схема реализации предложенного технического решения, где: 1 - космический аппарат (КА); 2 - герметичный контейнер, заполненный газом (например, азотом) с определенным рабочим давлением (абсолютным), в котором установлены: приборы 3, вентилятор 4 (резервированный), радиатор 5 (например, газожидкостиый радиатор), датчики температуры 6.1-6.4, таходатчик 7 (измеритель числа оборотов вала электродвигателя вентилятора, на котором установлена его крыльчатка); 8 - система телеметрии; 2.1 - газовод герметичного контейнера; 2.2 - теплоизоляция герметичного контейнера.

Предлагаемый способ контроля работы СТР КА, созданный авторами на основе анализа данных испытаний существующих вентиляторов, устанавливаемых в различных СТР, в термобарокамере при различных давлениях и температурах газа, включает в себя нижеуказанные операции, выполняемые в следующей последовательности.

1. В процессе изготовления вентилятор устанавливают в термобарокамеру и перед включением его в работу в ней создают номинальные условия по температуре (tг) и давление газа (Рг), соответствующие номинальным условиям в герметичном контейнере в условиях орбитального функционирования, например, 293 К (средняя температура газа по показаниям всех датчиков температуры, установленных в герметичном контейнере) и 117,68 кПа.

2. Включают в работу вентилятор и устанавливают на нем номинальное напряжение питания (Uв) и номинальный напор (ΔРв), соответствующие номинальным условиям эксплуатации вентилятора в герметичном контейнере в условиях орбитального функционирования (например, 27 В и 54 Па).

3. Измеряют расход (производительность) (Vв) и число оборотов вентилятора (nв) (например, 100 дм3/с и 4500 об/мин).

4. Испытывают вентилятор в объеме вышеуказанных пунктов 1-3 при различных температурах газа и напряжениях питания (величины давления газа и напор вентилятора - первоначальные, установленные в пунктах 1, 2).

5. Испытывают вентилятор в объеме пунктов 1-4, создавая в термобарокамере по п.1 различные давления газа (РГi): от максимального - РГ макс=1,2·РГ по п.1 до минимального, например, РГ мин=0,1·РГ по п.1 через интервал давления, например, 20 кПа.

6. Данные измерений по пп.1-5 помещают в таблицы и строят графики зависимостей

- Vв=f(PГi);

- nВ=f(PГi) - см., для примера, фиг.3,

при первоначально установленном напоре вентилятора и при различных сочетаниях tг=const; Uв=const.

7. Во время орбитального функционирования периодически осуществляют телеметрические измерения величин температур газа (по измерениям несколькими датчиками температуры значений определяют среднее значение температуры газа в герметичном контейнере), напряжения питания вентилятора, числа оборотов электродвигателя вентилятора и определяют, используя данные графиков, полученных при испытаниях вентилятора в процессе его изготовления, значения расхода и давления газа в герметичном контейнере, которые должны находиться в допустимых пределах в случае нормального функционирования СТР КА.

В настоящее время проведены опытные работы с реализацией предложенного технического решения в СТР КА, анализ данных которых показал, что конкретная величина давления газа достоверно определяется измеренным значением числа оборотов электродвигателя вентилятора применительно для любого конкретного условия эксплуатации на орбите, а исключение из состава СТР КА датчика давления обеспечит снижение массы на ~ 0,4 кг и энергопотребления на 1,4 Вт и, таким образом, как следует из вышеизложенного, тем самым достигается цель изобретения.

Способ контроля работы системы терморегулирования космического аппарата при его орбитальном функционировании, включающий периодические телеметрические измерения температур газа в герметичном контейнере и числа оборотов работающего электродвигателя установленного в нем вентилятора, отличающийся тем, что при указанном периодическом контроле величину давления газа в герметичном контейнере определяют по измеренному телеметрическому значению числа оборотов электродвигателя вентилятора, используя данные, полученные при предварительных автономных испытаниях вентилятора в виде зависимости величины числа оборотов электродвигателя вентилятора от величины давления прокачиваемого им газа, и сравнивают ее с допустимым значением.
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 101-109 из 109.
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
08.03.2019
№219.016.d5af

Высокоточный космический акселерометр

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. Акселерометр содержит инерционную массу, корпус и электрическую схему переключателя и фиксации времени, внутреннюю полую сферу, имеющую...
Тип: Изобретение
Номер охранного документа: 0002468374
Дата охранного документа: 27.11.2012
11.03.2019
№219.016.d891

Способ и устройство осушения воздуха для дегидрации волновода антенны

Предлагаемое изобретение относится к радиотехнике и предназначено для защиты волновода антенны от воздействия факторов окружающей среды, в частности от влаги и пыли, путем подачи в защищаемые полости осушенного воздуха под избыточным давлением. Согласно изобретению устройство содержит воздушную...
Тип: Изобретение
Номер охранного документа: 0002395138
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f14d

Устройство для измерения угловых перемещений

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения за счет уменьшения погрешности, вызванной смещением оси вращения преобразования устройства для измерения угловых перемещений, снижение требований к точности исполнения и жесткости механических...
Тип: Изобретение
Номер охранного документа: 0002397440
Дата охранного документа: 20.08.2010
19.04.2019
№219.017.33d9

Силовой ключ на мдп-транзисторе

Изобретение относится к импульсной технике и может быть применено в различных коммутационных устройствах. Технический результат заключается в повышении надежности работы силового ключа. Для этого предложен силовой ключ на МДП-транзисторе, содержащий трансформатор, конец вторичной обмотки...
Тип: Изобретение
Номер охранного документа: 0002469474
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f65

Способ формирования испытательных тестов электронных устройств

Изобретение относится к способам испытаний электронных устройств различного назначения путем использования испытательных тестов (наборы испытательных воздействий и соответствующих им допустимых отклонений контролируемых параметров устройств), сформированных по результатам математического...
Тип: Изобретение
Номер охранного документа: 0002469372
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
05.07.2019
№219.017.a6b1

Способ передачи цифровой информации через параллельную магистраль

Настоящее изобретение относится к вычислительной технике и автоматике. Техническим результатом является повышение отказоустойчивости. Способ позволяет исправлять информацию на параллельной магистрали путем тройного повторения (записи) информации, со смещением информации на число разрядов,...
Тип: Изобретение
Номер охранного документа: 0002465632
Дата охранного документа: 27.10.2012
10.07.2019
№219.017.b102

Способ контроля герметичности изделий в вакуумной камере

Изобретение относится к области испытательной техники и предназначено для применения в космической отрасли при испытании космических аппаратов (КА), а также может быть использовано в атомной, химической промышленности, в различных отраслях машиностроения. Изобретение направлено на повышение...
Тип: Изобретение
Номер охранного документа: 0002444713
Дата охранного документа: 10.03.2012
Показаны записи 111-120 из 120.
09.06.2019
№219.017.7efa

Подложка панели солнечной батареи и способ ее изготовления

Изобретение относится к солнечным батареям, служащим для преобразования солнечной энергии в электрическую. Подложка панели солнечной батареи состоит из сетчатого материала, изготовленного из струн, пропитанных связующим составом, согласно изобретению струны выполнены из арамидного шнура. Способ...
Тип: Изобретение
Номер охранного документа: 0002449226
Дата охранного документа: 27.04.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
10.07.2019
№219.017.aeaf

Траверса для переносов и проведения монтажно-стыковочных работ крупногабаритных изделий

Изобретение относится к подъемно-перегрузочным устройствам для проведения операций по переносу и монтажно-стыковочным работам. Траверса содержит несущую балку с установленной на ней серьгой и стропы, снабженные такелажными узлами и регулируемыми винтовыми вставками. Стропы имеют общие точки...
Тип: Изобретение
Номер охранного документа: 0002323870
Дата охранного документа: 10.05.2008
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5a3

Способ испытаний системы терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002698573
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6b1

Система терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к системам терморегулирования. Система терморегулирования космического аппарата содержит два сдублированных одинаковых жидкостных контура. В каждом жидкостном контуре установлен терморегулятор расхода теплоносителя прямого действия. Он...
Тип: Изобретение
Номер охранного документа: 0002698967
Дата охранного документа: 02.09.2019
10.12.2019
№219.017.ebb5

Устройство поворота объекта

Изобретение относится к области устройств для высокоточного поворота объектов и может быть использовано для остронаправленных антенн или зубчатых венцов при сборке ротора электрической машины космического аппарата (КА). Устройство поворота объекта содержит привод, связанное с последним и...
Тип: Изобретение
Номер охранного документа: 0002708408
Дата охранного документа: 06.12.2019
23.05.2020
№220.018.209b

Способ изготовления отражательной сетчатой поверхности антенны и сетчатое полотно для его осуществления

Изобретение относится к области технологии изготовления отражательных поверхностей параболических антенн. При изготовлении отражательной сетчатой поверхности антенны сетчатую поверхность выполняют основовязаным переплетением из металлической нити толщиной не более 30 мкм, наносят на поверхность...
Тип: Изобретение
Номер охранного документа: 0002721766
Дата охранного документа: 22.05.2020
23.05.2023
№223.018.6ef7

Космический аппарат

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла. Кроме того, КА включает систему электропитания с солнечными батареями, комплексом автоматики и...
Тип: Изобретение
Номер охранного документа: 0002749928
Дата охранного документа: 21.06.2021
16.06.2023
№223.018.79c3

Гибко-плоский электронагреватель

Изобретение относится к области космического машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей (ЭН) космических аппаратов (КА). Технический результат - создание ЭН с увеличенным КПД для условий штатной работы в составе КА...
Тип: Изобретение
Номер охранного документа: 0002737666
Дата охранного документа: 02.12.2020
+ добавить свой РИД