×
10.06.2013
216.012.490c

Результат интеллектуальной деятельности: СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ЛАЗЕРНОМ РАКЕТНОМ ДВИГАТЕЛЕ И ЛАЗЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов. Способ включает подачу в камеру поглощения газообразного рабочего тела, создание в ней оптического плазменного ядра, фокусирования его через газодинамическое окно и инициирования непрерывного оптического разряда, нагрев им рабочего тела, создание реактивной тяги, за счет истечения рабочего тела из сопла, при этом лазерное излучение предварительно направляют через твердое окно, прозрачное для заданной длины волны излучения, в предварительную герметичную камеру, сообщенную с камерой поглощения лазерного ракетного двигателя, а отражение лазерного излучения и его фокусирование через газодинамическое окно осуществляют внутри вышеупомянутой предварительной герметичной камеры, внутри которой создают давление большее, чем в камере поглощения. Рабочее тело используют для охлаждения твердого окна. Лазерный ракетный двигатель содержит систему поворотных отражающих зеркал (наружное и внутреннее) и фокусирующее зеркало, камеру поглощения с газодинамическим окном 6 и сверхзвуковым соплом, систему подачи рабочего тела - коллектор, тракт охлаждения. Камера поглощения с газодинамическим окном, внутреннее поворотное отражающее зеркало и фокусирующее зеркало расположены внутри предварительной герметичной камеры, на поверхности которой имеется твердое окно, прозрачное для заданной длины волны лазерного излучения. Снаружи предварительной герметичной камеры перед твердым окном расположено наружное поворотное отражающее зеркало. Изобретение позволяет повысить КПД и удельный импульс лазерного ракетного двигателя. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к реактивным двигателям летательных аппаратов, преимущественно орбитальных и аэрокосмических аппаратов.

Известен лазерный ракетный двигатель (ЛРД) (патент РФ №2266420, МПК F02K 7/00, F24J 2/06, B64G 1/26, опубликованный 20.12.2005), который содержит источник импульсно-периодического лазерного излучения, оптический узел с концентратором излучения и отражателями, систему формирования плоского фронта излучения и соосный концентратору газодинамический узел. Формирующая система осуществляет прием и согласование апертуры лазерного пучка с габаритами оптического узла. Первый отражатель концентратора выполнен в форме конусообразной фигуры вращения с образующей поверхностью в виде части короткофокусной параболы. Газодинамический узел выполнен в виде приемника импульса давления, расположенного с тыльной стороны и на основании первого отражателя, а также реактивного сопла, установленного на расстоянии от основания и образующего щель для ввода лазерного излучения. Концентратор снабжен дополнительным отражателем, соосным первому отражателю и выполненным в форме фигуры вращения, образующая поверхности которой представляет собой дугу. Этот дополнительный отражатель размещен на пути фокусируемого первым отражателем пучка так, что фокальная область концентратора расположена в области указанной щели.

Известен лазерный ракетный двигатель и способ организации рабочего процесса в нем (патент US №4036012, МПК H05H 1/24, опубликованный 19.07.1977), наиболее близкий по технической сущности к заявленному и принятый за прототип. Лазерный ракетный двигатель включает непрерывный источник лазерного излучения (НОР), систему поворотных и фокусирующих зеркал, камеру поглощения с газодинамическим окном, сопло, систему подвода рабочего тела в зону поглощения со стороны газодинамического окна, баллоны с рабочим телом. Способ организации рабочего процесса в двигателе осуществляется следующим образом. Лазерный луч, попадая на систему поворотных и фокусирующих зеркал, фокусируется через газодинамическое окно в зоне поглощения, куда подается рабочее тело водород, одновременно в зону поглощения подается рабочее тело с добавкой дейтерия для инициирования оптического разряда и образования плазменного ядра, нагрев рабочего тела, которое обтекает плазменное ядро и истекает из сверхзвукового сопла, образуя реактивную струю.

Основными недостатками как прототипа, так и аналога является неэффективная работа газодинамических окон (ГДО) данных ЛРД в верхних разреженных слоях атмосферы Земли и тем более в условиях космического вакуума. Неэффективность проявляется в виде появления обратных токов рабочего тела из камеры поглощения (КП) через ГДО и их утечку в окружающую среду, что приводит к снижению удельного импульса ЛРД.

Кроме того, сравнительно высокий ожидаемый удельный импульс и обеспечение устойчивого «горения» непрерывного оптического разряда (НОР) предполагают небольшой расход рабочего тела с маленькой скоростью обдува НОРа. Данные требования налагают ограничения на эффективную работу ГДО, и поэтому, чтобы ГДО справлялся со своей задачей, перепад давления между КП и окружающей средой должен быть небольшим, и как следствие трудно достичь давления критического перепада в минимальном сечении сопла ЛРД, также это ведет к уменьшению удельного импульса и тяги ЛРД.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении КПД и удельного импульса ЛРД.

Технический результат достигается тем, что в способе организации рабочего процесса в лазерном ракетном двигателе, включающем подачу в камеру поглощения газообразного рабочего тела, создание в ней оптического плазменного ядра путем отражения лазерного излучения, фокусирования его через газодинамическое окно в приосевой части камеры поглощения и инициирования непрерывного оптического разряда, нагрев им рабочего тела, создание реактивной тяги за счет истечения рабочего тела из сопла, новым является то, что предварительно лазерное излучение направляют через твердое окно, прозрачное для заданной длины волны излучения, в предварительную герметичную камеру, сообщенную с камерой поглощения лазерного ракетного двигателя, а отражение лазерного излучения и его фокусирование через газодинамическое окно осуществляют внутри вышеупомянутой предварительной герметичной камеры.

Внутри предварительной герметичной камеры создают давление газообразным рабочим телом большее, чем в камере поглощения, а газообразное рабочее тело, полученное в тракте охлаждения лазерного ракетного двигателя, используют для охлаждения твердого окна на входе в герметичную камеру.

Технический результат достигается тем, что в лазерном ракетном двигателе, содержащем систему поворотных отражающих зеркал и фокусирующее зеркало, камеру поглощения с газодинамическим окном и сверхзвуковым соплом, систему подачи рабочего тела, тракт охлаждения, новым является то, что камера поглощения с газодинамическим окном, поворотное отражающее и фокусирующее зеркала расположены внутри предварительной герметичной камеры, на поверхности которой имеется твердое окно, прозрачное для заданной длины волны лазерного излучения, а снаружи предварительной герметичной камеры перед твердым окном расположено наружное поворотное отражающее зеркало.

Система охлаждения твердого окна в предварительной герметичной камере сообщена с трактом охлаждения лазерного ракетного двигателя.

Сущность способа заключается в вводе достаточно мощного лазерного излучения через прозрачное твердое окно в предварительную герметичную камеру и оттуда, переотражая от системы зеркал, фокусируют через газодинамическое окно (ГДО) в приосевую область камеры поглощения ЛРД и инициируя непрерывный оптический разряд, нагревая им рабочее тело, которое, истекая из сопла, создает реактивную тягу. Предварительная герметичная камера, в которой давление газообразного рабочего тела выше, чем в камере поглощения (КП), имеет существенно больший объем, чем КП, и в ней расположены отражающие и фокусирующие зеркала, передающие сконцентрированное излучение в КП. Охлаждаемое твердое окно в предварительной камере позволяет пропустить в него мощный поток лазерного излучения без перегрева и разрушения материала окна за счет уменьшения удельного потока лучистой энергии на единицу поверхности окна и его интенсивного охлаждения газообразным рабочим телом, которое создает избыточное давление в предварительной камере по сравнению с КП. Большой объем предварительной камеры представляет собой промежуточную емкость газообразного рабочего тела, дополнительно перетекающего в КП и создающего тягу. В связи с тем, что в предварительной камере давление выше, чем в КП, будут отсутствовать обратные токи из КП через ГДО, характерные для аэроракетных лазерных двигателей, которые существенно снижают тягу и удельный импульс. Увеличение давления в предварительной камере вызывает увеличение давления в КП и соответственно увеличение удельного импульса ЛРД при заданном давлении в сопле ЛРД.

Такой способ весьма привлекателен для космических ЛРД, т.к. нулевое давление в космосе создает сверхкритический перепад практически при любом давлении в КП.

На фиг.1 представлена схема способа организации рабочего процесса лазерного ракетного двигателя с твердым окном для ввода лазерного излучения в предварительную герметичную камеру.

На фиг.2 - вид А-А фиг.1.

Здесь: 1 - наружное отражающее поворотное зеркало; 2 - твердое окно, прозрачное для ввода лазерного луча; 3 - внутреннее отражающее поворотное зеркало; 4 - фокусирующее зеркало; 5 - предварительная герметичная камера; 6 - газодинамическое окно, 7 - камера поглощения, 8 - сверхзвуковое сопло, 9 - тракт охлаждения двигателя, 10 - коллектор.

Лазерный ракетный двигатель содержит систему поворотных отражающих зеркал (наружное 1 и внутреннее 3) и фокусирующее зеркало 4, камеру поглощения 7 с газодинамическим окном 6 и сверхзвуковым соплом 8, систему подачи рабочего тела - коллектор 10, тракт охлаждения 9. Камера поглощения 7 с газодинамическим окном 6, внутреннее поворотное отражающее зеркало 3 и фокусирующее зеркало 4 расположены внутри предварительной герметичной камеры 5, на поверхности которой имеется твердое окно 2, прозрачное для заданной длины волны лазерного излучения. Снаружи предварительной герметичной камеры 5 перед твердым окном 2 расположено наружное поворотное отражающее зеркало 1.

Система охлаждения твердого окна в предварительной герметичной камере 5 сообщена с трактом охлаждения 9 лазерного ракетного двигателя.

Лазерный ракетный двигатель работает следующим образом. Лазерный луч, отражаясь от наружного отражающего поворотного зеркала 1, через твердое окно 2 попадает в предварительную герметичную камеру 5, где отражается от внутреннего отражающего поворотного зеркала 3 и с помощью фокусирующего зеркала 4 через газодинамическое окно 6 фокусируется в предварительной камере поглощения 7. Для инициирования непрерывного оптического разряда вместе с рабочим телом подается аэрозоль раствора с солями щелочных металлов, снижающая порог пробоя оптического разряда. В образовавшемся непрерывном оптическом разряде поглощение лазерного луча в основном происходит в процессе, обратном тормозному излучению. Образовавшийся непрерывный оптический разряд газодинамически стабилизируется в приосевой области камеры поглощения 7, обдуваясь осесимметричным осевым потоком рабочего тела, истекающего из газодинамического окна 6. Поступающее по тракту охлаждения 9 в газодинамическое окно 6 рабочее тело, например водород, охлаждает стенки камеры поглощения 7 ЛРД. Рабочее тело, обтекая и частично проходя через плазму НОРа, нагревается и истекает, ускоряясь в сверхзвуковом сопле 8, образуя сверхзвуковую реактивную струю.

Однако при высоких уровнях мощности лазерного излучения подобные твердые окна 2 из прозрачных диэлектриков смогут работать сравнительно недолго. Для равномерного охлаждения твердого окна 2 предварительной камеры 5 через коллектор 10, имеющий отверстия по периметру окна, прокачивается холодное рабочее тело, например газообразный или жидкий водород. Поступающее через коллектор 10 в предварительную герметичную камеру 5 рабочее тело приводит к появлению по сравнению с окружающей средой избыточного давления. Создание избыточного давления в предварительной герметичной камере 5 перед ГДО и как следствие уменьшение перепада давления между камерой поглощения 7 и предварительной герметичной камерой 5 (на входе ГДО) позволит создавать более высокие давления в камере поглощения 7, что приводит к увеличению КПД ЛРД.

Лучистые тепловые потоки в непрерывном, в сплошном спектре можно определить по формуле Унзольда-Крамерса (Райзер Ю.П., Оптические разряды. - Успехи физических наук, 1980 г. т.132, вып.3, 567 с.):

где, qr - потери на излучение, кВт/см3;

g - энергия связи нижнего возбужденного уровня атома;

xe - молярная доля электронов;

Т - температура плазмы, K;

P - давление в камере поглощения энергетической установки, атм;

ne - концентрация электронов в плазме, образованной оптическим разрядом;

n - концентрация положительных ионов в плазме, образованной оптическим разрядом;

k - постоянная Больцмана, k=1,38·10-23 Дж/K;

е - заряд электрона, е=1,6·10-19 Кл;

m - масса электрона, m=9,1·10-31 кг;

h - постоянная Планка, h=6,62·10-34 Дж·с;

Первое слагаемое, пропорциональное единице в скобках, описывает тормозное излучение, второе - фоторекомбинационное.

Молярная доля электронов есть отношение концентрации электронов в рабочем газе к общему числу атомов:

где, общее число атомов, тогда

Таким образом, в соответствии с формулой Унзольда-Крамерса(1) повышение давления в камере поглощения 7 ЛРД приведет к уменьшению лучистых потерь от НОРа и к увеличению поглощения лазерного излучения и в результате больше энергии перейдет на нагрев рабочего тела путем теплопроводности и конвекции.

При работе двигателя со стороны предварительной герметичной камеры 5, то есть в канале ГДО, образуется перепад давления, препятствующий перетеканию рабочего тела из камеры поглощения 7 через ГДО в сторону предварительной камеры 5. Перетекание будет возможным только из предварительной камеры 5 в камеру поглощения 7, что будет соответствовать нормальной работе ЛРД.


СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ЛАЗЕРНОМ РАКЕТНОМ ДВИГАТЕЛЕ И ЛАЗЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ЛАЗЕРНОМ РАКЕТНОМ ДВИГАТЕЛЕ И ЛАЗЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 71.
25.08.2017
№217.015.9d4d

Способ работы газотурбинной установки

Изобретение относится к области энергетики. Способ работы газотурбинной установки, включающей дополнительный контур с низкокипящим рабочим телом, включающий входное устройство, сообщенное с источником низкокипящего рабочего тела, теплообменный аппарат, турбину, сообщенную с дополнительным...
Тип: Изобретение
Номер охранного документа: 0002610801
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.b02f

Поршневое устройство двигателя внутреннего сгорания (варианты)

Изобретение может быть использовано в двигателях внутреннего сгорания. Поршневое устройство двигателя внутреннего сгорания содержит компрессионное кольцо (3) и маслосъемное кольцо (4), расположенные в поршневой расточке (5). Маслосъемное кольцо (4) расположено под компрессионным кольцом (3)....
Тип: Изобретение
Номер охранного документа: 0002613478
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.c03c

Способ изготовления интегральной стрингерной панели

Изобретение относится к технологии изготовления панелей с интегрированным силовым набором и может быть использовано в производстве летательных и космических аппаратов. Способ включает образование обшивки из листов препрега, изготовление системы преформ стрингеров из других листов препрега,...
Тип: Изобретение
Номер охранного документа: 0002616662
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c5bd

Способ соединения наложенных друг на друга металлических листов клинчеванием

Изобретение относится к области обработки металлов давлением, в частности к способам соединения наложенных друг на друга металлических листов местной пластической деформацией с образованием клинч-соединения. На первой стадии осуществляют локальную высадку, для чего в пакет листов, помещенных на...
Тип: Изобретение
Номер охранного документа: 0002618681
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c7f2

Способ теплового воздействия на продукт, транспортируемый по трубопроводу, на пунктах подогрева нефти и установка для его осуществления

Группа изобретений относится к трубопроводному транспорту. Способ включает регулируемую подачу компонентов топлива, воспламенение и сжигание топлива в печи. Продукты сгорания топлива в первой теплообменной системе нагревают промежуточный теплоноситель и охлаждаются до температуры на 10-20°С...
Тип: Изобретение
Номер охранного документа: 0002619222
Дата охранного документа: 12.05.2017
26.08.2017
№217.015.e534

Способ воспламенения топливной смеси в двигателе внутреннего сгорания лазерным оптическим разрядом и авиационная лазерная свеча зажигания

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным свечам зажигания, в которых для поджига топливной смеси «керосин + воздух» используется импульсный оптический разряд, в котором энергия лазерного излучения концентрируется в заранее заданном фокусе F....
Тип: Изобретение
Номер охранного документа: 0002626465
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e539

Сверлильно-клепальный автомат для клепки криволинейных панелей

Изобретение относится к сверлильно-клепальному оборудованию и может быть использовано при клепке криволинейных панелей. Автомат содержит верхнюю силовую головку, поддерживающе-выравнивающее устройство для панели, систему управления и три датчика-дальномера для измерения расстояния до...
Тип: Изобретение
Номер охранного документа: 0002626520
Дата охранного документа: 28.07.2017
19.01.2018
№218.016.0e8b

Способ формирования шероховатого полимерного защитного покрытия на обсадной трубе

Изобретение относится к области машиностроения, в частности к формированию шероховатого защитного покрытия обсадных труб. Способ включает гидродинамическую, термическую и механическую очистку поверхности трубы, после чего на очищенную поверхность трубы наносят слой праймера и сушат его при...
Тип: Изобретение
Номер охранного документа: 0002633206
Дата охранного документа: 11.10.2017
02.11.2018
№218.016.999c

Гиперзвуковой летательный аппарат

Гиперзвуковой летательный аппарат (ЛА) содержит корпус с системой тепловой защиты, бак горючего с системой подачи и регулирования. Корпус представляет симметрично увеличивающееся и уменьшающееся по оси тело, имеющее форму веретена, остроугольного треугольника либо диска, и имеет систему...
Тип: Изобретение
Номер охранного документа: 0002671452
Дата охранного документа: 31.10.2018
19.04.2019
№219.017.31fa

Маслосъемное поршневое кольцо двигателя внутреннего сгорания

Изобретение относится к машиностроению, а конкретно к проектированию, производству и эксплуатации двигателей внутреннего сгорания, и позволяет существенно сократить расход масла на угар и улучшить экологические показатели двигателя. Двигатель внутреннего сгорания содержит цилиндр (1), поршень...
Тип: Изобретение
Номер охранного документа: 0002458239
Дата охранного документа: 10.08.2012
Показаны записи 61-70 из 73.
13.01.2017
№217.015.9007

Синхронный электродвигатель с магнитной редукцией

Изобретение относится к электротехнике, а именно к синхронным электродвигателям с магнитной редукцией. Синхронный электродвигатель с магнитной редукцией содержит корпус 1 и подшипниковые щиты 2, 3. На них установлены кольца 4, 5 пакета статора. На кольце 4 имеются шесть зубцов 6 с коронками и с...
Тип: Изобретение
Номер охранного документа: 0002604058
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9d4d

Способ работы газотурбинной установки

Изобретение относится к области энергетики. Способ работы газотурбинной установки, включающей дополнительный контур с низкокипящим рабочим телом, включающий входное устройство, сообщенное с источником низкокипящего рабочего тела, теплообменный аппарат, турбину, сообщенную с дополнительным...
Тип: Изобретение
Номер охранного документа: 0002610801
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.b02f

Поршневое устройство двигателя внутреннего сгорания (варианты)

Изобретение может быть использовано в двигателях внутреннего сгорания. Поршневое устройство двигателя внутреннего сгорания содержит компрессионное кольцо (3) и маслосъемное кольцо (4), расположенные в поршневой расточке (5). Маслосъемное кольцо (4) расположено под компрессионным кольцом (3)....
Тип: Изобретение
Номер охранного документа: 0002613478
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.c03c

Способ изготовления интегральной стрингерной панели

Изобретение относится к технологии изготовления панелей с интегрированным силовым набором и может быть использовано в производстве летательных и космических аппаратов. Способ включает образование обшивки из листов препрега, изготовление системы преформ стрингеров из других листов препрега,...
Тип: Изобретение
Номер охранного документа: 0002616662
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c5bd

Способ соединения наложенных друг на друга металлических листов клинчеванием

Изобретение относится к области обработки металлов давлением, в частности к способам соединения наложенных друг на друга металлических листов местной пластической деформацией с образованием клинч-соединения. На первой стадии осуществляют локальную высадку, для чего в пакет листов, помещенных на...
Тип: Изобретение
Номер охранного документа: 0002618681
Дата охранного документа: 10.05.2017
25.08.2017
№217.015.c7f2

Способ теплового воздействия на продукт, транспортируемый по трубопроводу, на пунктах подогрева нефти и установка для его осуществления

Группа изобретений относится к трубопроводному транспорту. Способ включает регулируемую подачу компонентов топлива, воспламенение и сжигание топлива в печи. Продукты сгорания топлива в первой теплообменной системе нагревают промежуточный теплоноситель и охлаждаются до температуры на 10-20°С...
Тип: Изобретение
Номер охранного документа: 0002619222
Дата охранного документа: 12.05.2017
26.08.2017
№217.015.e534

Способ воспламенения топливной смеси в двигателе внутреннего сгорания лазерным оптическим разрядом и авиационная лазерная свеча зажигания

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным свечам зажигания, в которых для поджига топливной смеси «керосин + воздух» используется импульсный оптический разряд, в котором энергия лазерного излучения концентрируется в заранее заданном фокусе F....
Тип: Изобретение
Номер охранного документа: 0002626465
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e539

Сверлильно-клепальный автомат для клепки криволинейных панелей

Изобретение относится к сверлильно-клепальному оборудованию и может быть использовано при клепке криволинейных панелей. Автомат содержит верхнюю силовую головку, поддерживающе-выравнивающее устройство для панели, систему управления и три датчика-дальномера для измерения расстояния до...
Тип: Изобретение
Номер охранного документа: 0002626520
Дата охранного документа: 28.07.2017
19.01.2018
№218.016.0e8b

Способ формирования шероховатого полимерного защитного покрытия на обсадной трубе

Изобретение относится к области машиностроения, в частности к формированию шероховатого защитного покрытия обсадных труб. Способ включает гидродинамическую, термическую и механическую очистку поверхности трубы, после чего на очищенную поверхность трубы наносят слой праймера и сушат его при...
Тип: Изобретение
Номер охранного документа: 0002633206
Дата охранного документа: 11.10.2017
02.11.2018
№218.016.999c

Гиперзвуковой летательный аппарат

Гиперзвуковой летательный аппарат (ЛА) содержит корпус с системой тепловой защиты, бак горючего с системой подачи и регулирования. Корпус представляет симметрично увеличивающееся и уменьшающееся по оси тело, имеющее форму веретена, остроугольного треугольника либо диска, и имеет систему...
Тип: Изобретение
Номер охранного документа: 0002671452
Дата охранного документа: 31.10.2018
+ добавить свой РИД