×
10.06.2013
216.012.48a4

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

№ охранного документа
0002484176
Дата охранного документа
10.06.2013
Аннотация: Изобретение относится к области обработки металлов давлением, а именно к способам изготовления тонких листов методом холодной прокатки из высокопрочных псевдо-β-титановых сплавов, которые могут быть использованы в аэрокосмической, химической отраслях промышленности, машиностроении, медицине и других областях народного хозяйства. Способ изготовления тонких листов из псевдо-β-титановых сплавов включает выплавку сплава, получение сляба, механическую обработку поверхности сляба, горячую, теплую, холодную прокатки, отжиг и старение. Выплавляют псевдо-β-титановый сплав с содержанием Al в сплаве не более 5,0 мас.% и молибденовым эквивалентом Mo eq.≥12 мас.%, рассчитываемым по формуле: Mo eq. мас.% = %Mo + %Ta/4 + %Nb/3.3 + %W/2 + %V/1,4 + %Cr/0,6 + + %Fe/0,5 + %Ni/0,8 + %Mn/0,6 + %Co/0,9. Полученный после горячей и теплой прокатки подкат толщиной 8-2 мм перед холодной прокаткой подвергают закалке при Т+(20-50°С) в течение 0,1-0,5 часа с последующим охлаждением, холодную прокатку проводят соответственно до толщины листа 6-1 мм в однофазном β-состоянии за два и более этапа в несколько проходов со степенью деформации за один проход 1-6% и общей степенью деформации на каждом этапе 30-50%, при этом между этапами осуществляют промежуточные закалки по режиму, идентичному закалке подката перед холодной прокаткой. Получают качественный тонколистовой прокат из высоколегированных псевдо-β-титановых сплавов. 5 ил., 2 табл.
Основные результаты: Способ изготовления тонких листов из псевдо-β-титановых сплавов, включающий выплавку сплава, получение сляба, механическую обработку поверхности сляба, горячую, теплую, холодную прокатки, отжиг и старение, отличающийся тем, что выплавляют псевдо-β-титановый сплав с содержанием Al в сплаве не более 5,0 мас.% и молибденовым эквивалентом Mo eq.≥12 мас.%, рассчитываемым по формуле:Mo eq. мас.% = %Mo + %Ta/4 + %Nb/3.3 + %W/2 + %V/1,4 + %Cr/0,6 + + %Fe/0,5 + %Ni/0,8 + %Mn/0,6 + %Co/0,9,при этом полученный после горячей и теплой прокатки подкат толщиной 8-2 мм перед холодной прокаткой подвергают закалке при Т+(20-50°С) в течение 0,1-0,5 ч с последующим охлаждением, холодную прокатку проводят соответственно до толщины листа 6-1 мм в однофазном β-состоянии за два и более этапа в несколько проходов со степенью деформации за один проход 1-6% и общей степенью деформации на каждом этапе 30-50%, при этом между этапами осуществляют промежуточные закалки по режиму, идентичному закалке подката перед холодной прокаткой.

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления тонких листов методом холодной прокатки из высокопрочных псевдо-β-титановых сплавов, которые могут быть использованы в аэрокосмической, химической отраслях промышленности, машиностроении, медицине и других областях народного хозяйства.

Холодная прокатка по сравнению с горячей имеет два больших преимущества. Во-первых, она позволяет производить листы и полосы толщиной менее 1,0-0,8 мм вплоть до нескольких микрон, что горячей прокаткой недостижимо. Во-вторых, она обеспечивает получение продукции более высокого качества по всем показателям - точности размеров, отделке поверхности, физико-механическим свойствам.

Титановые сплавы достаточно трудоемки при обработке, поэтому затраты на их обработку значительно выше в сравнении с большинством других конструкционных металлов. В частности, большинство титановых сплавов трудно поддаются деформации при комнатной температуре, вследствие этого в промышленности предпочтение отдается горячей деформационной обработке для получения полуфабрикатов, в том числе листового проката.

Например, известен способ изготовления тонких листов из сплавов преимущественно на основе титана прокаткой в пакете, включающий подготовку заготовки, сборку пакета с использованием стального кейса, горячую прокатку пакета, термообработку пакета, разделение листов, термообработку, прогладку, правку и отделку поверхности листов, при этом горячую прокатку пакета осуществляют при термодеформационных параметрах, реализующих схему деформации однородного сжатия материала кейса и листов, листы термообрабатывают и правят преимущественно в вакуумной печи в условиях крипа (Патент РФ №2179899, МПК B21B 1/38).

Процесс предварительно требует тщательной скрупулезной подготовки, он затратный и малопроизводительный по сравнению с холодной прокаткой. Кроме того, реализация технологии в условиях высоких температур само по себе значительно усложняет сам процесс и требует наличия дорогостоящего нагревательного оборудования.

Известны условия, при соблюдении которых можно значительно повысить технологическую пластичность и снизить сопротивление деформации титановых сплавов при комнатной температуре до приемлемого уровня, позволяющего вести холодную прокатку.

При практически одинаковых содержаниях примесей критическое воздействие на величину технологической пластичности при комнатной температуре оказывают следующие факторы:

- повышенное содержание β-фазы с объемно-центрированной кубической решеткой, которая по своей природе более пластична, чем гексагональная α-фаза;

- пониженное содержание алюминия, т.к при увеличении содержания его в сплаве технологическая пластичность снижается, а при содержании более 6% (по массе) Al технологическая пластичность сплавов становится незначительна.

Указанным требованиям при определенных обстоятельствах соответствуют высоколегированные псевдо-β-титановые сплавы с пониженным содержанием алюминия и высоким содержанием β-фазы, которая фиксируется закалкой. Данные сплавы в закаленном состоянии обладают высокой пластичностью и способны к холодной деформации.

Однако в конечном изделии для достижения высоких механических свойств при высокой вязкости разрушения необходимо произвести старение сплавов. В процессе старения происходит дисперсионный распад β-фазы с образованием по границам зерен тонкой прослойки α-фазы, которая снижает технологическую пластичность сплава и делает невозможным холодную прокатку титановых сплавов.

Известен способ изготовления листов из β-титановых сплавов, включающий механическую обработку поверхности сляба, горячую, теплую, холодную прокатки, отжиг и старение (патент РФ №2318913, МПК C22F 1/18, B21B 3/00).

Способ не обеспечивает получения листов из псевдо-β-титановых сплавов, так как не гарантирует отсутствие α-фазы в процессе холодной прокатки и не ограничивает критичное содержание алюминия в титановых сплавах, которые допускается обрабатывать данным способом.

Задачей, на решение которой направлено заявленное изобретение, является получение качественного листового полуфабриката из высокопрочных псевдо-β-титановых сплавов толщиной до 1 мм и менее с повышенным выходом годного при минимальных трудовых и энергетических затратах.

Технический результат, достигаемый при осуществлении изобретения, заключается в получении качественного листового проката, в том числе тонколистового из высоколегированных псевдо-β-титановых сплавов, методом холодной прокатки, которая производится на заготовке с подготовленным однофазным β-состоянием сплава при регламентированном содержании в нем алюминия.

Технический результат достигается тем, что в способе изготовления тонких листов из псевдо-β-титановых сплавов, включающем выплавку сплава, получение сляба, механическую обработку поверхности сляба, горячую, теплую, холодную прокатки, отжиг и старение, выплавляют псевдо-β-титановый сплав с содержанием Al в сплаве не более 5,0 мас.% и молибденовым эквивалентом Mo eq, % мас.≥12 мас.%, рассчитывается по формуле:

Mo eq, мас.% = %Mo+%Ta/4+%Nb/3.3+%W/2+%V/1,4+%Cr/0,6+%Fe/0,5+%Ni/0,8+%Mn/0,6+%Co/0,9,

при этом полученный после горячей и тепловой прокатки подкат толщиной 8-2 мм перед холодной прокаткой подвергают закалке при Тпп+(20-50°С) в течение 0,1-0,5 часа с последующим охлаждением, холодную прокатку проводят соответственно до толщины листа 6-1 мм в однофазном β-состоянии за два или более этапов в несколько проходов со степенью деформации за один проход 1-6% и общей деформации на каждом этапе 30-50%, при этом между этапами осуществляют промежуточные закалки по режиму, идентичному закалке подката перед холодной прокаткой.

Способ применим при прокатке псевдо-β-титановых сплавов, состав которых соответствует следующим условиям:

1. Молибденовый эквивалент (Mo eq.) должен составлять не менее 12 мас.%. Это позволяет в процессе закалки на воздухе листов толщиной до 8 мм зафиксировать метастабильную β-фазу и тем самым при последующих операциях гарантировано повысить технологическую пластичность до приемлемого уровня.

2. Содержание Al не должно превышать 5,0 мас.%, т.к. превышение этой величины снижает технологическую пластичность псевдо-β-титановых сплавов до уровня делающего листовую холодную прокатку проблематичной.

Вся технологическая цепочка, начиная от обработки слитка до изготовления подката, основана на известных методах горячей и теплой обработки, т.к. они наиболее технологически и экономически выгодны и полностью удовлетворяют требованиям сегодняшнего дня.

Перед холодной прокаткой производится закалка подката при температуре при Тпп+(20-50°С), выдержке в течение 0,1-0,5 часа с последующим охлаждением, временные и температурные интервалы при закалке выбраны из следующих соображений:

- режимы закалки ниже нижних границ не гарантируют образование структуры, состоящей полностью из β-фазы;

- превышение верхних границ ведет к интенсивному росту β-зерен, что наследуется металлом до конечного продукта и приводит к значительному уменьшению значений механических свойств сплава, особенно в состаренном состоянии.

Закалка позволяет в сплавах с Mo eq. ≥12 мас.% переводить 100% структуру сплава в однофазное β-состояние.

Содержание алюминия в сплаве не должно превышать 5%, т.к. эта величина является критичной и ее превышение снижает технологическую пластичность до уровня, затрудняющего проведение холодной прокатки.

Способность псевдо-β-титановых сплавов, закаленных на метастабильную β-фазу, к распаду при нагреве с образованием вторых фаз дает возможность применять упрочняющую термическую обработку для получения необходимого уровня механических свойств в конечном продукте. Для этого необходимо перед отжигом и старением ввести в материал энергии напряжений достаточной для рекристаллизационных процессов.

Холодная прокатка производится со степенями:

- общая степень деформации осуществляется в пределах 30-50% за один этап, которая осуществляется за несколько проходов;

- деформация за один проход - 1-6%.

Для сохранения однофазного β-состояния в процессе холодной прокатки между этапами производят промежуточную закалку по режиму, идентичному первой закалке подката.

Деформация в пределах менее указанных не позволяет создать достаточный наклеп материала, достаточного для протекания процессов возврата при отжиге по механизму рекристаллизации.

Деформация более указанных создает предпосылки для механического распада β-фазы, образования на границах зерен α-фазы и, как следствие этого, снижения технологической пластичности и образования трещин в процессе прокатки.

Предлагаемый способ опробован в производственных условиях листопрокатного цеха при изготовлении листов псевдо-β-титанового сплава VST3553 толщиной H=1,6 мм.

Листы изготовлены из горячекатаных заготовок псевдо-β-титанового сплава VST3553 толщиной Ho=20 мм. Химический состав приведен в таблице 1.

Таблица 1
Химический состав сплава
Массовая доля элементов, %
Al Mo V Cr Zr Fe Si C N
3.18 4.82 5.20 2.62 <0.003 0.334 0.049 0.009 0.014

Температуру полиморфного превращения Тпп определили методом пробных закалок, она составила 795°С.

Молибденовый эквивалент был рассчитан по приведенной формуле

Mo eq.=%Mo++%V/1,4+%+Cr/0,6+%Fe/0,5=4,82+3,71+4,36+0,66=13,56 мас.%.

Технология изготовления листов толщиной 1,6 мм

1. Нагрев заготовок в электрической печи при установочной температуре 750°С, продолжительность 30 мин.

2. Прокатка заготовок до толщины 5 мм: Hi=20→5 мм с промежуточными подогревами с продолжительностью 10 мин при промежуточных толщинах подката 15 мм, 10 мм. Суммарная степень деформации ε=75%.

2. Закалка 820°С, 20 минут, охлаждение в воде.

3. Первый этап холодной прокатки Hi=5 мм→2.55 мм, ε=49%, за 10 проходов.

4. Второй этап прокатки Hi=2,55 мм→1,6 мм, ε=37%, за 7 проходов.

5. Термообработка: закалка+старение.

Изобретение поясняется фотографиями.

На фиг.1 показана микроструктура горячекатаного подката H=5 мм, средний поперечный размер β-зерна составляет в центре 180-230 мкм, на периферии 150 мкм, что свидетельствует о неоднородности деформации по сечению листа. Первичная α-фаза, в основном глобулярная, ее размер 1-2 мкм. Она образует скопления более темного цвета, что свидетельствует о неоднородности деформации.

На фиг.2 показана микроструктура горячекатаного подката H=5 мм после закалки, состоящая из равновесного рекристаллизованного зерна со средним размером 65±13 мкм, состоящим из β-фазы.

На фиг.3 показана микроструктура холоднокатаного листа H=2,55 мм после первого этапа холодной прокатки подката. Произошло уменьшение среднего размера β-зерна до 45±3 мкм с увеличением степени анизотропии до 2. В теле зерен наблюдается большое количество линий скольжения и двойников. В продольном сечении просматриваются линии скольжения, проходящие через несколько зерен.

На фиг.4 показана микроструктура холоднокатаного листа H=1.6 мм после второго этапа холодной прокатки подката. Наблюдается уменьшение среднего поперечного размера исходного β-зерна до Dβ≈30-40 мкм с анизотропией 3-4, а также увеличение количества и плотности линий скольжения и двойников.

На фиг.5 показана микроструктура холоднокатаного листа H=1.6 мм, закалка с температуры 815°С после выдержки 15 минут и старения при температуре 550°С, выдержка 2 часа. Выдержка 15 минут при температуре β-области обеспечивает мелкозернистую рекристаллизованную структуру β-фазы со средним размером зерна 55±3 мкм. Последующее старение приводит к распаду пересыщенного твердого раствора с образованием мелкопластинчатой α-фазы, приводящего к существенному упрочнению сплава.

Механические свойства полученных листов h=1.6 мм из сплава VST3553 после различных режимов старения приведены в таблице 2.

Таблица 2
Механические свойства холоднокатаных листов h=1.6 мм из сплава VST3553 после различных режимов старения
Вдоль поперек
σ0,2, МПа σв, МПа δ, % σ0,2, МПа σв, МПа δ, %
лист №4 - h=1,6 мм 742 823 14 772 818 8,6
815°С 15 мин вода 759 813 11,4 753 810 10,8
(исходное) ср 750,5 818 12,7 762,5 814 9,7
815°С 15 мин вода+530°С 6 часов воздух 1243 1322 3,4 1383 1438 1
815°С 15 мин вода+
550°С 6 часов воздух
1149 1210 5,6 1189 1246 4,4
1134 1228 6,8 1217 1306 4,9
ср 1141,5 1219 6,2 1203 1276 4,65
815°С 15 мин вода+
580°С 6 часов воздух
1067 1130 6,5 1149 1205 5,6
1066 1158 8,4 1167 1233 4,6
ср 1066 1144 7,45 1158 1219 5,1

Данный способ позволяет получить тонкие качественные листы из высокопрочных псевдо-β-титановых сплавов с низкой анизотропией механических свойств на стандартном технологическом оборудовании.

Способ изготовления тонких листов из псевдо-β-титановых сплавов, включающий выплавку сплава, получение сляба, механическую обработку поверхности сляба, горячую, теплую, холодную прокатки, отжиг и старение, отличающийся тем, что выплавляют псевдо-β-титановый сплав с содержанием Al в сплаве не более 5,0 мас.% и молибденовым эквивалентом Mo eq.≥12 мас.%, рассчитываемым по формуле:Mo eq. мас.% = %Mo + %Ta/4 + %Nb/3.3 + %W/2 + %V/1,4 + %Cr/0,6 + + %Fe/0,5 + %Ni/0,8 + %Mn/0,6 + %Co/0,9,при этом полученный после горячей и теплой прокатки подкат толщиной 8-2 мм перед холодной прокаткой подвергают закалке при Т+(20-50°С) в течение 0,1-0,5 ч с последующим охлаждением, холодную прокатку проводят соответственно до толщины листа 6-1 мм в однофазном β-состоянии за два и более этапа в несколько проходов со степенью деформации за один проход 1-6% и общей степенью деформации на каждом этапе 30-50%, при этом между этапами осуществляют промежуточные закалки по режиму, идентичному закалке подката перед холодной прокаткой.
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ПСЕВДО-БЕТА-ТИТАНОВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 42.
17.02.2018
№218.016.2bd2

Катушка дифференцирующего индукционного преобразователя тока

Изобретение относится к электротехнике, а именно к конструкции дифференцирующих индукционных преобразователей тока (ДИПТ), и предназначено для измерения тока в проводниках высоковольтных электроэнергетических систем. Катушка охватывает изолятор ввода в какое-либо электрооборудование:...
Тип: Изобретение
Номер охранного документа: 0002643160
Дата охранного документа: 31.01.2018
20.02.2019
№219.016.bf91

Расходуемый электрод вакуумной дуговой печи и способ его изготовления

Изобретение относится к области электротехники, в частности к расходуемым электродам для выплавки слитков высокореакционных металлов и сплавов, например титановых, методом вакуумного дугового переплава, а также к способу изготовления указанных электродов. Электрод состоит из прессованных блоков...
Тип: Изобретение
Номер охранного документа: 0002359432
Дата охранного документа: 20.06.2009
20.02.2019
№219.016.bfeb

Способ контроля межэлектродного промежутка в процессе вакуумной дуговой плавки

Изобретение относится к области специальной электрометаллургии, а именно к вакуумному дуговому переплаву высокореакционных металлов и сплавов. Способ включает измерение напряжения на дуге в момент нахождения ее в центральной части торцевой поверхности переплавляемого электрода во время...
Тип: Изобретение
Номер охранного документа: 0002374337
Дата охранного документа: 27.11.2009
20.02.2019
№219.016.c308

Подовая печь для получения расплавленного металла

Изобретение относится к производству жидкого металла в черной и цветной металлургии, в частности, может быть использовано для производства титановых сплавов в вакуумных плавильных печах с холодным подом и независимыми источниками нагрева. Печь дополнительно содержит установленный над расплавом...
Тип: Изобретение
Номер охранного документа: 0002406048
Дата охранного документа: 10.12.2010
29.03.2019
№219.016.f18d

Способ контроля и регулирования межэлектродного промежутка в процессе вакуумной дуговой плавки и устройство для его осуществления

Изобретение относится к области специальной электрометаллургии, а именно к вакуумному дуговому переплаву высокореакционных металлов и сплавов и может быть использовано при выплавке слитков из титановых сплавов. Технический результат - повышение точности измерения. Способ контроля заключается в...
Тип: Изобретение
Номер охранного документа: 0002395596
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f2e5

Способ правки короткомерных труб

Изобретение относится к области обработки металлов давлением цилиндрических заготовок, преимущественно к правке труб малой длины из труднодеформируемых сплавов, например титановых. Предлагаемый способ заключается в том, что перед нагревом трубы насаживают на металлическую оправку, фиксируют...
Тип: Изобретение
Номер охранного документа: 0002374022
Дата охранного документа: 27.11.2009
29.03.2019
№219.016.f66a

Способ пластической правки профилей из титановых сплавов

Изобретение относится к обработке металлов давлением профильных изделий постоянного сечения из титановых сплавов, преимущественно длинномерных, и может быть использовано в авиастроении, машиностроении, энергетике, судостроении и металлургии. Осуществляют нагрев профиля до температуры выше...
Тип: Изобретение
Номер охранного документа: 0002403114
Дата охранного документа: 10.11.2010
04.04.2019
№219.016.fc53

Способ изготовления образцов

Изобретение относится к литейному производству. Разливку ведут в изложницу, содержащую полость для формирования слитка и полость для формирования образца, сообщающиеся между собой. Перед началом разливки в стандартную изложницу устанавливают разъемную вставку, высота которой составляет 0,3-0,5...
Тип: Изобретение
Номер охранного документа: 0002355506
Дата охранного документа: 20.05.2009
10.04.2019
№219.017.0252

Кристаллизатор вакуумной дуговой печи

Изобретение относится к специальной электрометаллургии, в частности к кристаллизаторам вакуумных дуговых и плазменно-дуговых печей. Кристаллизатор содержит соленоид, который выполнен в виде последовательно соединенных обмоток, и снабжен токораспределительными коллектором с подвижными...
Тип: Изобретение
Номер охранного документа: 0002347827
Дата охранного документа: 27.02.2009
10.04.2019
№219.017.06bb

Вакуумная дуговая печь

Изобретение относится к области металлургии, в частности к конструкциям вакуумных дуговых печей для переплавки титановых отходов. В поддоне печи выполнены, по крайней мере, два углубления сферической или конусной формы, образующие литейные полости, предназначенные для заполнения их...
Тип: Изобретение
Номер охранного документа: 0002425158
Дата охранного документа: 27.07.2011
Показаны записи 21-30 из 38.
24.07.2018
№218.016.7404

Система электроснабжения потребителей собственных нужд электрической станции

Использование: в области электротехники. Технический результат – повышение коэффициента мощности, потребляемой от сборных шин ГРУ электродвигателями собственных нужд (с.н.), снижение максимальных значений токов всех потребителей с.н. и обеспечение их бесперебойного электроснабжения. Система...
Тип: Изобретение
Номер охранного документа: 0002661936
Дата охранного документа: 23.07.2018
05.09.2018
№218.016.82ea

Способ изготовления плит из двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов, и предназначено для изготовления плоского проката, применяемого в авиационной промышленности, а также машиностроении. Способ изготовления плит из двухфазных...
Тип: Изобретение
Номер охранного документа: 0002665864
Дата охранного документа: 04.09.2018
07.12.2018
№218.016.a459

Устройство фильтрации жидких смесей

Изобретение относится к сельскому хозяйству, конкретно к устройствам фильтрации жидких смесей. Устройство фильтрации жидких смесей содержит полый цилиндрический корпус с крышкой, имеющий входной цилиндрический патрубок, расположенный по касательной к корпусу, и осевой выходной патрубок в нижнем...
Тип: Изобретение
Номер охранного документа: 0002674197
Дата охранного документа: 05.12.2018
08.03.2019
№219.016.d2ec

Способ термической обработки листового проката из псевдо-альфа титанового сплава марки вт18у

Настоящее изобретение относится к области металлургии титановых сплавов и может быть использовано для повышения комплекса механических свойств листового проката из высоколегированного псевдо-альфа титанового сплава марки ВТ18У. Способ термической обработки листового проката из псевдо-альфа...
Тип: Изобретение
Номер охранного документа: 0002681236
Дата охранного документа: 05.03.2019
16.03.2019
№219.016.e1a2

Фильтр для очистки молока

Изобретение относится к сельскому хозяйству. Предложен фильтр для очистки молока. Фильтр включает корпус, цилиндрический фильтроэлемент и образованную корпусом и наружной поверхностью фильтроэлемента камеру фильтрации. Внутренняя полость цилиндрического фильтроэлемента сообщена с патрубком...
Тип: Изобретение
Номер охранного документа: 0002682045
Дата охранного документа: 14.03.2019
19.04.2019
№219.017.2ed5

Способ получения листов из титанового сплава ti-6al-4v

Изобретение относится к области обработки металлов давлением, а именно к способу изготовления тонких листов из высокопрочного титанового сплава Ti-6Al-4V методом рулонной прокатки. Способ включает предварительную обработку слитка, резку листов и отделочные операции. Предварительную обработку...
Тип: Изобретение
Номер охранного документа: 0002381296
Дата охранного документа: 10.02.2010
19.04.2019
№219.017.341a

Способ изготовления фольги из интерметаллидных ортосплавов на основе титана

Изобретение предназначено для повышения качества фольги, изготавливаемой холодной прокаткой из сплавов на основе алюминидов титана, основанных на орторомбической фазе TiAlNb. Способ включает производство слитков или порошковых заготовок. Они подвергаются горячей термомеханической обработке, в...
Тип: Изобретение
Номер охранного документа: 0002465973
Дата охранного документа: 10.11.2012
18.05.2019
№219.017.56b9

Способ получения прутков из титановых сплавов (варианты)

Изобретения относятся к обработке металлов давлением и могут быть использованы при получении прутков из титановых сплавов, предназначенных, например, для изготовления из них крепежных деталей. Полученную из слитка заготовку подвергают горячей прокатке на пруток. Осуществляют травление прутка,...
Тип: Изобретение
Номер охранного документа: 0002311248
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.56e7

Способ изготовления листов из β-титановых сплавов

Изобретение относится к цветной металлургии, в частности к термомеханической обработке труднодеформируемых, высокопрочных β-титановых сплавов, и может быть использовано при изготовлении тонких листов методом прокатки. Способ изготовления листов из β-титановых сплавов включает механическую...
Тип: Изобретение
Номер охранного документа: 0002318913
Дата охранного документа: 10.03.2008
18.05.2019
№219.017.56e8

Способ изготовления листов из β-титановых сплавов

Изобретение относится к цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано при изготовлении листов из высокопрочных β-титановых сплавов методом прокатки. Способ изготовления листов из β-титановых сплавов включает горячее прессование...
Тип: Изобретение
Номер охранного документа: 0002318914
Дата охранного документа: 10.03.2008
+ добавить свой РИД