×
10.06.2013
216.012.4896

Результат интеллектуальной деятельности: СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ТЕХНОЛОГИЧЕСКИХ И ПРОДУКТИВНЫХ РАСТВОРОВ И ПУЛЬП

Вид РИД

Изобретение

Аннотация: Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию редкоземельных элементов на сорбенте. В качестве сорбента используют амфолит с иминодиацетатными функциональными группами. Сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части. Сорбцию осуществляют при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 часов и в присутствии восстановителя. Техническим результатом является высокая эффективность способа за счет большей сорбционной емкости и избирательности амфолита. 5 табл., 5 пр.
Основные результаты: Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включающий сорбцию редкоземельных элементов на сорбенте, отличающийся тем, что в качестве сорбента используют амфолит с иминодиацетатными функциональными группами и сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части, при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 ч, в присутствии восстановителя.

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ.

Сорбционное извлечение РЗЭ целесообразно использовать для первичного концентрирования из растворов с низким содержанием РЗЭ, особенно на фоне значительного количества солей (железо(III) и Al) в растворе. В этом случае используемые иониты должны обладать высокой емкостью и селективностью по отношению к РЗЭ.

Известен способ [Временный, технологический регламент производства полиуранатов аммония, ФГУП "ВНИИХТ", ЗАО "ДАЛУР", с.Уксянское, 2006], в котором извлечение РЗЭ из технологического раствора рН=0.5÷2.5 осуществляется путем сорбции на гелевом сульфокатионите КУ-2. Полученный после элюирования и осаждения концентрат содержит %: РЗЭ - 1; железо - 2,0÷2,2; алюминий - 15÷18; вода - 82. Далее предлагается стадия переосаждения с целью доведения чернового концентрата РЗМ до товарной продукции 30-40%.

Основными недостатками данного способа является малая сорбционная емкость и избирательность сульфокатионита по РЗЭ и неэффективная операция доведения чернового концентрата РЗМ до товарной продукции. Эти недостатки приводят к необходимости применения дополнительного оборудования - реакторов для растворения гидратов, фильтров для фильтрации большого количества полупродуктов, а также к дополнительному расходу достаточно дорогого реагента - щелочи при выщелачивании алюминия. Кроме того, степень извлечения РЗЭ данным способом достаточно низка - выход составляет 60%.

Для уменьшения влияния железа(III) и Al, на параметры сорбционного извлечения РЗЭ был использован способ [Смирнов Д.И., Молчанова Т.В., Водолазов Л.И., Пеганов В.А. Сорбционное извлечение редкоземельных элементов, иттрия и алюминия из красных шламов. // Цветные металлы, №8, 2002, с.64-69.]. В котором сорбцию РЗЭ вели из подкисленной до pH=1,7 сбросной пульпы, полученной после сорбционного выщелачивания скандия из красных шламов, на гелевом сульфокатионите КУ-2. Извлечение в черновой концентрат РЗЭ, иттрия и алюминия составило 48, 42 и 29% соответственно. После щелочного отделения алюминия был получен коллективный концентрат РЗЭ и иттрия с содержанием суммы оксидов РЗЭ 18÷25% и иттрия 9÷14%.

Тем не менее, в этом способе также не удалось эффективно извлечь РЗЭ вследствие конкурентной сорбции на сульфокатионите железа(III) и алюминия. Стадия доведения чернового концентрата до товарной продукции является трудоемким и энергоемким процессом, что делает экономически невыгодным извлечение РЗЭ из растворов и пульп этим способом.

Наиболее близким к заявленному является способ (прототип) [Мурсалимова М.Л., Строева Э.В. Определение равновесных параметров сорбции ионов иттрия и лантана из минерализованных растворов и железосодержащих пульп на карбоксильный катионит КБ-4 гелевого типа. // Вестник ОГУ, №5, 2006, с.86-90], в котором для повышения емкости сорбента по РЗЭ используется карбоксильный катионит гелевого типа КБ-4, а для повышения селективности процесса извлечения в присутствии железа(III) и Al кислый раствор, содержащий РЗЭ, нейтрализуется аммиаком до pH=6,2. Более высокая емкость карбоксильного катионита по сравнению с сульфокатионитом является следствием образования прочных комплексных соединений РЗЭ с карбоксильными группами катионита КБ-4 в отличие от чисто электростатического взаимодействия РЗЭ с сульфогруппами, в случае сульфокатионита. Отделение от основных примесей железа(Ш) и алюминия достигается при переводе их в гидроксидную форму при pH=6,2.

Недостатком этого способа является тот факт, что максимальная сорбируемость по РЗЭ на карбоксильном катионите наблюдается при pH=6,2. Это приводит к необходимости нейтрализовать кислый раствор до этого значения pH, что является следствием значительных потерь РЗЭ (до 25%) в результате соосаждения с гидроксидами железа(III) и алюминия.

Лучших результатов по сравнению с карбоксильными катионитами для извлечения РЗЭ из растворов с pH=2.5÷6.5 можно достичь, используя амфолиты с иминодиацетатными группами. Данный интервал pH определяется началом диссоциации функциональных групп амфолита и началом осаждения гидроксидов редкоземельных элементов. За счет комплексообразования при pH>2.5, вследствие диссоциации функциональных групп, данный класс амфолитов позволяет отделить РЗЭ от примесей щелочных, щелочноземельных металлов, алюминия и ряда других катионов, что решительно упрощает дальнейшую переработку элюатов. Более высокая емкость иминодиацетатных амфолитов по сравнению с карбоксильными катионитами, определяется образованием более прочных комплексных соединений РЗЭ с функциональными группами амфолитов.

Известно [В.Н.Рычков, Е.В.Кириллов, М.Л.Черный. Сорбционное выделение редкоземельных металлов из растворов сложного состава комплексообразующими ионитами // Материалы международной конференции "Благородные и редкие металлы" БРМ-2003, Украина, Донецк, 22-26 сентября 2003.], что иминодиацетатные амфолиты отличаются высоким сродством к переходным элементам (железо(III), медь, никель, кобальт, свинец). Для устранения влияния этих мешающих ионов на сорбцию РЗЭ из растворов (пульп) с pH>2.5 используют их осаждение щелочными или комплексообразующими агентами. Эта операция, при сорбции РЗЭ, из осветленного раствора, позволит получать более чистые элюаты, что скажется на уменьшении дальнейших затрат при производстве товарных концентратов.

Максимально полного отделения РЗЭ от ионов железа(III), как наиболее мешающей примеси, можно добиться путем введения в раствор восстановителя с целью восстановления ионов железа(III) до железа(II), т.к. известно, что амфолиты с иминодиацетатными функциональными группами проявляют незначительное сродство к ионам железа(II) [А.В.Гоголев, М.В.Никонов, И.Г.Тананаев, Б.Ф.Мясоедов Отделение трехвалентных актиноидов и редкоземельных элементов от примесей железа с применением некоторых комплексных соединений. // Радиохимия. №6, Т.47, 2005. с.534-535].

Разница в сорбируемости разных валентных состояний железа объясняется отличием их электронных конфигураций. Электронная структура железа(III) определяет комплексообразование с функциональными группами иминодиацетатного амфолита как за счет координации к кислороду гидроксильной группы амфолита, так и за счет координации к азоту иминной группы, являющемуся донором электронов.

Поглощение амфолитом ионов железа(II) начинает проявляться при pH>3, с началом диссоциации карбоксильных группировок. Сорбция в данном случае идет только за счет обмена ионов железа на ион водорода карбоксильной группировки, без образования комплексного соединения.

Депрессирующее влияние разновалентных ионов железа и алюминия на сорбцию РЗЭ из растворов иминодиацетатным амфолитом позволяет говорить о том, что для повышения степени извлечения РЗЭ необходимо стремиться уменьшать влияние фоновых примесей в растворе как за счет нейтрализации, так и за счет введения в систему восстановителя.

Задачей изобретения является создание более эффективного сорбционного способа извлечения РЗЭ из растворов, содержащих также железо(III) и Al.

Поставленная задача достигается согласно способу, который заключается в сорбционном извлечении редкоземельных элементов из растворов на амфолите, содержащем иминодиацетатные функциональные группы. Для этого раствор подвергается предварительной нейтрализации или подкислению до pH=4÷5 любым щелочным или кислым агентом, с дальнейшим введением амфолита в образовавшуюся пульпу, без отделения твердой части, при соотношении ионит: пульпа 1:50-1:150, времени контакта фаз 3-6 часов, в присутствии восстановителя.

Пример 1

В таблице 1 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от pH раствора.

Сорбцию проводили в статических условиях из кислых растворов HCl, H2SO4, HNO3 (pH=1; 2; 3; 4; 5; 6), содержащих 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов (0,5 г) контактировали при перемешивании с 50 см3 вышеуказанного раствора в течение 5 часов. Растворы после сорбции анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 1
Степень извлечения лантана, %
pH=1 pH=2 pH=3 pH=4 pH=5 pH=6
HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3 HCl H2SO4 HNO3
Амф олит 1,5 1,3 1,3 2 1,7 1,5 20 17 15 32 28,6 28 31 27,1 28 22 18 19

Из данных таблицы 1 видно, что с увеличением pH раствора сорбируемость РЗЭ (лантан) проходит через пик. Максимальная сорбируемость наблюдается при изменении pH от 4 до 5. Уменьшение сорбируемости при меньшем pH связано с протонированием карбоксильных групп амфолита. Увеличение pH раствора также приводит к уменьшению сорбируемости лантана, причиной чего является глубокий гидролиз ионов РЗЭ (лантан) и соосаждение с гидроксидами железа и алюминия. Полученные закономерности верны для всех исследуемых кислых сред.

Пример 2

В таблице 2 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от соотношения ионит: пульпа.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, содержащих 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов (0,5 г) контактировали при перемешивании с полученной после нейтрализации пульпой при соотношении ионит: пульпа 1:10, 1:30, 1:50, 1:80, 1:100, 1:150, 1:200, в течение 5 часов. Растворы после сорбции анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 2
емкость, мг/г
1:10 1:30 1:50 1:80 1:100 1:150 1:200
Амфолит 2 5 14 28 30 33 35

Из данных таблицы 2 видно, что с увеличением соотношения ионит: пульпа >1:50 сорбируемость РЗЭ (лантан) увеличивается.

Пример 3

В таблице 3 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от времени контакта фаз.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, при соотношении ионит: пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов контактировали при перемешивании с пульпой, в течение 0.5, 1, 3, 5, 7, 9 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 3
% емкость от максимальной
0,5 часа 1 час 3 часа 5 часов 7 часов 9 часов
Амфолит 20 40 85 95 96 99

Как видно из табл.3, наиболее полное извлечение РЗЭ (лантан) происходит за 3-6 часов.

Пример 4

В таблице 4 представлены результаты исследований по выбору оптимальных условий сорбционного извлечения РЗЭ (лантан) в зависимости от температуры проведения процесса.

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=4, при соотношении ионит:пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. Навески амфолитов контактировали при перемешивании с пульпой, при температуре 20; 40; 60; 80°C, в течение 5 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 4
% емкость от максимальной
20°C 40°C 60°C 80°С
Амфолит 85 87 87 89

Из данных таблицы 4 следует, что температура проведения процесса сорбции лантана не оказывает заметного влияния на степень его извлечения из кислых растворов.

Пример 5

В таблице 5 представлены результаты исследований по влиянию добавок различных восстановителей на полноту и избирательность извлечения РЗЭ (лантан).

Сорбцию проводили в статических условиях из кислого раствора H2SO4, нейтрализованного до pH=2, 3, 4, 5, 6 при соотношении ионит: пульпа 1:100, содержащего 1000 мг/дм3 РЗЭ (лантан), 1000 мг/дм3 железа(III), 1000 мг/дм3 алюминия. После доведения pH пульпы до необходимого значения, в пульпу вводили восстановитель (железная стружка, сульфит натрия, мочевина) с шестикратным избытком от стехиометрического содержания ионов железа(III). Далее навески амфолитов контактировали при перемешивании с пульпой в течение 5 часов. Растворы, после сорбции, анализировали атомно-эмиссионным методом с индуктивно связанной плазмой. Сорбируемость и степень извлечения определяли по разнице начальной и конечной концентрации ионов в растворе.

Таблица 5
Восстановитель Степень извлечения, %
рН=2 pH=3 pH=4 pH=5 pH=6
La Fe(III) A1 La Fe(III) A1 La Fe(III) Al La Fe(III) Al La Fe(III) Al
Без восстановителя 1,7 2,5 1 17 20 5 28,6 10 10 27,1 7 3 18 2 0,5
Железная стружка 3 0,07 1,3 24 0,07 6 50 0,1 8 49 0,01 4 27 0,05 0,4
Сульфит натрия 3,3 0,055 1,5 24,5 0,075 5 47,6 0,2 8 49,1 0,09 2 25 0,06 0,4
Мочевина 3,1 0,05 1,4 23 0,06 5 50 0,15 7 51 0,07 2 28 0,04 0,3

Из данных таблицы 5 следует, что введение в кислый раствор восстановителя приводит к резкому увеличению емкости иминодиацетатного амфлита по РЗЭ (лантан) и уменьшению емкости по железу(III).

Таким образом, технический результат, предложенного способа извлечения РЗЭ из растворов определяется высокой эффективностью этого способа за счет большей сорбционной емкости и избирательности иминодиацетатного амфолита по РЗЭ в присутствии железа(III) и Al, при нейтрализации или подкислении раствора до pH=4-5 и проведении процесса сорбции в присутствии восстановителя.

Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включающий сорбцию редкоземельных элементов на сорбенте, отличающийся тем, что в качестве сорбента используют амфолит с иминодиацетатными функциональными группами и сорбцию проводят после предварительной нейтрализации или подкисления раствора до pH=4÷5 любым щелочным или кислым агентом с дальнейшим введением амфолита в полученную пульпу без отделения твердой части, при соотношении амфолит:пульпа 1:50÷1:150, времени контакта фаз 3÷6 ч, в присутствии восстановителя.
Источник поступления информации: Роспатент

Показаны записи 111-119 из 119.
04.04.2018
№218.016.36be

Сцинтилляционный гамма-спектрометр

Изобретение относится к области сцинтилляционных γ-спектрометров, точнее к спектрометрам энергий на основе сцинтилляторов NaI:Tl, CsI:Tl, CsI:Na, LaCl:Ce и других, характеризующихся многокомпонентными световыми вспышками с сильной зависимостью постоянных времени высвечивания от температуры...
Тип: Изобретение
Номер охранного документа: 0002646542
Дата охранного документа: 05.03.2018
16.06.2018
№218.016.63b4

Сырьевая смесь для зольного аглопоритового гравия

Изобретение относится к технологиям производства пористых заполнителей для промышленного, гражданского и дорожного строительства. Технической задачей изобретения является разработка состава сырьевой смеси, обеспечивающего повышение теплоизоляционных свойств зольного гравия посредством...
Тип: Изобретение
Номер охранного документа: 0002657567
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.6676

Способ изготовления и состав пасты для толстопленочного резистора

Изобретение относится к способу изготовления пасты для толстопленочного резистора. Порошки молибдена, тантала, магния и кремния смешивают, прессуют в штабик и помещают в герметичный реактор. Реактор заполняют инертным газом и приводят штабик в контакт с раскаленной проволокой. В результате в...
Тип: Изобретение
Номер охранного документа: 0002658644
Дата охранного документа: 22.06.2018
02.03.2019
№219.016.d1e7

Способ гамма-радиографической интроскопии

Изобретение относится к области радиографической интроскопии, точнее к гамма-радиографической интроскопии массивных деталей и заготовок из тяжелых металлов. Способ гамма-радиографической интроскопии дополнительно содержит этапы, на которых располагают детекторы на минимальном расстоянии между...
Тип: Изобретение
Номер охранного документа: 0002680849
Дата охранного документа: 28.02.2019
10.04.2019
№219.017.0779

6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он

Описывается новое соединение - 6-(2'-Амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он формулы (2) обладающее противовирусным действием и низкой токсичностью. Данное соединение может найти применение в медицине. 1 пр., 3 ил.
Тип: Изобретение
Номер охранного документа: 0002455304
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.7fb4

Роторный ветрогидродвигатель

Изобретение относится к роторным энергоустановкам, использующим кинетическую энергию ветра или потока воды для преобразования ее в механическую энергию. Роторный ветрогидродвигатель содержит вал, соединенный с дисками, между которыми установлены на периферии на своих осях лопасти с возможностью...
Тип: Изобретение
Номер охранного документа: 0002464443
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.8bda

Способ получения парацетамола

Предложен новый способ получения парацетамола, заключающийся в восстановлении п-нитрозофенола, проводимом в этилацетате в присутствии Pd/C-содержащего катализатора при давлении водорода 2,0-4,0 атм и температуре 20-50°С, последующем ацилировании образующегося п-аминофенола и выделении целевого...
Тип: Изобретение
Номер охранного документа: 0002461543
Дата охранного документа: 20.09.2012
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
31.07.2019
№219.017.ba79

Способ определения параметров движения объектов локации в радиолокационных датчиках с частотной манипуляцией непрерывного излучения радиоволн и устройство для его реализации

Изобретение относится к области радиолокации с частотной манипуляцией непрерывного излучения (ЧМНИ) радиоволн и может быть использовано для обнаружения движущихся целей, измерения расстояния до объекта локации, скорости и направления движения. Достигаемый технический результат - расширение...
Тип: Изобретение
Номер охранного документа: 0002695799
Дата охранного документа: 29.07.2019
Показаны записи 111-120 из 192.
20.04.2015
№216.013.43da

Способ изготовления материала для получения магнитного клина

Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя,...
Тип: Изобретение
Номер охранного документа: 0002548868
Дата охранного документа: 20.04.2015
10.06.2015
№216.013.524b

Способ получения пленок твердых растворов замещения pbsnse методом ионного обмена

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере...
Тип: Изобретение
Номер охранного документа: 0002552588
Дата охранного документа: 10.06.2015
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7528

Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава

Настоящее изобретение относится к областям металлургии, а именно к способам термической обработки высоколегированных псевдо-β титановых сплавов. Способ термической обработки крупногабаритных изделий из высокопрочного титанового сплава, содержащего, мас.%: 4,0…6,3 алюминия, 4,5…5,9 ванадия,...
Тип: Изобретение
Номер охранного документа: 0002561567
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75fa

Контактный теплоутилизатор с каплеуловителем

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. Контактный теплоутилизатор с каплеуловителем содержит контактную насадку с оросителем, по высоте которой монтирован каплеуловитель,...
Тип: Изобретение
Номер охранного документа: 0002561791
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8b3f

Способ получения невзрывного разрушающего средства агломерационным обжигом

Изобретение относится к технологиям получения невзрывных разрушающих средств (НРС) на основе известняка, которые применяются для разработки природного камня и щадящего разрушения строительных конструкций и объектов, выводимых из эксплуатации. Невзрывное разрушающее средство получают...
Тип: Изобретение
Номер охранного документа: 0002567254
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.93ea

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса содержит устройство суммирования напряжений, генератор модуляции,...
Тип: Изобретение
Номер охранного документа: 0002569485
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95a9

Способ измерения относительной теплопроводности при внешнем воздействии

Изобретение относится к области теплофизических измерений и может быть использовано для определения относительной теплопроводности материалов. Плоский исследуемый образец известной толщины помещают между двумя алмазными наковальнями с теплопроводностью, существенно превышающей теплопроводность...
Тип: Изобретение
Номер охранного документа: 0002569933
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9657

Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих излучений на основе оскида алюминия, в том числе при облучении в условиях повышенных температур окружающей среды

Изобретение относится к способу измерения накопленных высоких и сверхвысоких доз и мощностей доз ионизирующих излучений термолюминесцентными (ТЛ) детекторами на основе оксида алюминия. Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002570107
Дата охранного документа: 10.12.2015
+ добавить свой РИД