×
27.05.2013
216.012.4537

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ПОТОКА ЖИДКОСТИ В ТРУБОПРОВОДЕ

Вид РИД

Изобретение

№ охранного документа
0002483296
Дата охранного документа
27.05.2013
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну. При этом зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе. Технический результат заключается в упрощении процедуры измерения сплошности потока. 1 ил.
Основные результаты: Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну, отличающийся тем, что зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ измерения сплошности потока жидкости в трубопроводе (см. В.А.Викторов, и др. Радиоволновые измерения параметров технологических процессов, Москва, Энергоиздат, 1989, с.168), в котором информацию о сплошности потока жидкости получают путем сравнения характеристик прошедшей через поток жидкости электромагнитной волны с аналогичными характеристиками зондирующей поток электромагнитной волны.

Недостатком этого способа является погрешность, обусловленная сложностью процедуры сравнения характеристик прошедшей и зондирующей электромагнитных волн.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения сплошности потока жидкости в трубопроводе (см. Патент РФ №20908868, Бюл. Изобр. 1997, №26). Суть этого способа заключается в использовании эффекта поляризации электромагнитных волн в потоке жидкости при воздействии на него электрического поля и измерении разности фаз между вышедшими из потока двух поляризованных перпендикулярно и параллельно силовым линиям электрического поля составляющими. Здесь по разности фаз указанных выше составляющих определяют сплошность потока жидкости в трубопроводе.

Недостатком этого известного способа можно считать сложность процедуры измерения информационного параметра, связанную с широким диапазоном изменения разности фаз.

Техническим результатом заявляемого решения является упрощение процедуры измерения сплошности потока.

Технический результат достигается тем, что в способе определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну, зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе.

Сущность заявляемого технического решения, характеризуемого совокупностью указанных выше признаков, состоит в измерении амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны, возникающей воздействием электрического поля на поток, приводящего к поляризации зондирующей поток электромагнитной волны.

Наличие в заявляемом способе перечисленных существенных признаков позволяет решить поставленную задачу определения сплошности потока жидкости в трубопроводе измерением амплитуды электрического поля прошедшей через поток эллиптически поляризованной электромагнитной волны с желаемым техническим результатом, т.е. упрощением процедуры измерения сплошности потока жидкости в трубопроводе.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит генератор электромагнитных колебаний 1, соединенный выходом с элементом ввода электромагнитной волны 2, элемент вывода электромагнитной волны 3, подключенный ко входу амплитудного детектора 4, соединенный выходом через усилитель 5 со входом измерителя амплитуды электрического поля 6. На чертеже цифрами 7, 8 и 9 обозначены соответственно электроды и трубопровод.

Предлагаемый способ основывается на использовании поляризации электромагнитных волн в потоке жидкости.

Поляризация электромагнитных волн, как правило, возникает в средах, имеющих свойства анизотропии.

Из практики известны среды со свойствами и без свойств анизотропией. При этом большинство сред не обладают анизотропии. В соответствии с этим заявляемый способ направлен на решение задачи определения сплошности потока жидкости жидких диэлектрических сред, не обладающих естественной анизотропией.

Пусть по трубопроводу протекает поток неанизотропной диэлектрической жидкости. В рассматриваемом случае для того чтобы контролируемый поток стал анизотропным, необходимо воздействовать на поток, например электрическим полем (эффект Керра). После этого зондирующая поток волна, направленная перпендикулярно силовым линиям приложенного электрического поля, может поляризоваться в потоке при распространении по нему. В данном случае при поляризации зондирующей волны, в потоке возникают две одинаковые по амплитуде ее составляющие, которые направлены перпендикулярно и параллельно зондирующему полю. При этом для этих составляющих показатели преломления будут изменяться. Все это приведет к тому, что поляризованные параллельно и перпендикулярно зондирующему полю волны (составляющие) будут распространяться по потоку с разной скоростью. В результате такого различия скоростей распространения указанных выше взаимно ортогональных волн, на выходе из потока жидкости между этими волнами образуется разность фаз ψ, которую можно определить как

где l - путь проходимый составляющими (волнами) в анизотропном потоке, λ - длина зондирующей волны, Δn - разность показателей преломления, определяемая выражением:

Δn=ne-no,

где ne - показатель преломления волны с плоскостью поляризации, параллельной силовым линиям электрического поля, no - показатель преломления волны с плоскостью поляризации, перпендикулярной силовым линиям электрического поля.

Известно, что параметр Δn для анизотропных жидких сред зависит от длины зондирующей волны λ, постоянной Керры В и напряженности приложенного электрического поля Е и может быть вычислен как

.

В рассматриваемом случае суперпозиция взаимно перпендикулярных поляризованных волн (составляющих) в потоке жидкости, имеющих разность фаз ψ, приведет к образованию эллиптически поляризованной волны, амплитуда электрического поля которой при выходе из потока жидкости может быть определена как

где Еп - амплитуда электрического поля прошедшей через поток эллиптически поляризованной волны, Ео - амплитуда электрического поля зондирующей поток жидкости волны.

Совместное преобразование выражений (1) и (3) с учетом формулы (2) позволяет записать

Сплошность потока, связанная с физическим состоянием двухкомпонентных сред, например, жидкости и газа, характеризует степень однородности и определяется соотношением (см. В.А.Викторов и др. Высокочастотный метод измерения неэлектрических величин)

где s - сплошность потока, ν1 и ν2 - соответственно объемы жидкости и газа на единице длины трубопровода. Соотношение (5) показывает, что при отсутствии жидкости (s=0) ν1=0 и ν2=max, а при наличии потока жидкости без газовых включений (s=1) ν1=max и ν2=0. Отсюда следует, что по величинам объемов ν1 и ν2, рассчитанных по площади поперечного сечения трубопровода при изменении его внутреннего диаметра от 0 до диаметра d (максимальное значение), можно судить о сплошности газожидкостного потока.

Анализ газожидкостного потока в трубопроводе показывает, что при формировании объема ν1 длина пути l, ого проходимый волной (см. формулу (1)), фактически определяет величину площади поперечного сечения потока. Следовательно, определение длины l, связанной с объемом ν1 на единице длины трубопровода через площадь поперечного сечения потока, даст возможность оценить величину сплошности потока в трубопроводе.

При зондировании потока электромагнитной волной, направленной навстречу потока, заполняющего, например, горизонтальный трубопровод, в формуле (1) вместо l следует использовать соотношение ld/(2d-l). Это вытекает из того факта, что при вертикальном к направлению потока (параллельно зондирующему полю с обратным знаком) заполнении (опорожнении) трубопровода средой, длина l может изменяться от 0 до внутреннего диаметра d трубопровода. В силу этого выражение (4) можно переписать как

Eп=Eocos(πldBE2/(2d-l)).

Последнее выражение показывает, что измерением амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны через l можно судить о сплошности потока жидкости в трубопроводе. При этом при отсутствии потока (l=0) максимальное значение Еп будет соответствовать нулевой (минимальной) сплошности, а значение Еп, определяемое параметрами d, B и E - максимальной сплошности (полный поток, т.е. l=d).

В устройстве, реализующем предлагаемый способ, для измерения амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны электромагнитные колебания, генерируемые генератором электромагнитных колебаний 1, с помощью элемента ввода электромагнитной волны 2 направляются в поток жидкости. После этого в измерительном участке трубопровода 9, по которому протекает контролируемая среда, создается электрическое поле при помощи электродов 7 и 8. При этом зондирующее поток электромагнитное поле должно быть перпендикулярным силовым линиям приложенного электрического поля. Под воздействием электрического поля поток жидкости становится анизотропным и в результате поляризации зондирующей волны в потоке в нем образуются ортогональные волны, направленные перпендикулярно и параллельно зондирующему поток полю. Далее прошедшая через поток жидкости эллиптически поляризованная волна принимается элементом вывода электромагнитной волны 3. С выхода последнего сигнал поступает на вход амплитудного детектора 4, где входной сигнал детектируется и далее поступает на вход усилителя 5. После усиления, сигнал поступает в измеритель амплитуды 6, где измеряется амплитуда электрического поля прошедшей через поток жидкости эллиптически поляризованной волны. Здесь по измеренным значениям амплитуды можно судить о сплошности потока жидкости в трубопроводе.

Таким образом, согласно предлагаемому способу на основе проведения измерения амплитуды электрического поля прошедшей через поток жидкости эллиптически поляризованной волны можно обеспечить упрощение процедуры определения сплошности потока жидкости в трубопроводе.

Способ определения сплошности потока жидкости в трубопроводе, при котором воздействуют на поток жидкости электрическим полем, зондируют контролируемый поток электромагнитной волной и принимают прошедшую через поток электромагнитную волну, отличающийся тем, что зондирование потока осуществляют ортогонально силовым линиям электрического поля, измеряют амплитуду электрического поля прошедшей через поток жидкости эллиптически поляризованной волны и по измеренному значению амплитуды электрического поля этой волны определяют сплошность потока жидкости в трубопроводе.
СПОСОБ ОПРЕДЕЛЕНИЯ СПЛОШНОСТИ ПОТОКА ЖИДКОСТИ В ТРУБОПРОВОДЕ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 131.
11.03.2019
№219.016.dc7a

Устройство для контроля гранулометрического состава кусковых материалов

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Устройство содержит: генератор электромагнитных колебаний; передающую и приемную рупорные антенны; усилитель; элемент ортогональной поляризации, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002404426
Дата охранного документа: 20.11.2010
15.03.2019
№219.016.e074

Способ управления движением корабля по глубине

Изобретение относится к области судовождения и касается автоматического управления движением корабля без хода в вертикальной плоскости. Способ базируется на двух этапах программного управления с использованием датчика и задатчика глубины, блока задания, в котором формируют заданный сигнал...
Тип: Изобретение
Номер охранного документа: 0002392183
Дата охранного документа: 20.06.2010
15.03.2019
№219.016.e07f

Способ измерения сопротивлений, индуктивностей и емкостей и устройства для его реализации

Группа изобретений относится к области измерительной техники. Последовательно осуществляют три такта измерения частоты колебаний при различной конфигурации частотно-зависимой цепи. Причем в первом такте формируют измеряемую величину , где Z- первый эталонный пассивный электрический элемент,...
Тип: Изобретение
Номер охранного документа: 0002395099
Дата охранного документа: 20.07.2010
15.03.2019
№219.016.e0ff

Устройство для оценки выполнения научно-исследовательских и опытно-конструкторских работ

Изобретение относится к вычислительной технике и может быть использовано для оценки выполнения научно-исследовательских и опытно-конструкторских работ (НИОКР) с целью их объективной оценки в целом и по стадиям процесса. Техническим результатом изобретения является повышение точности оценки...
Тип: Изобретение
Номер охранного документа: 0002452018
Дата охранного документа: 27.05.2012
15.03.2019
№219.016.e111

Автоматизированная многофункциональная система анализа изображений объектов

Изобретение относится к области систем компьютерной обработки и анализа изображений разнотипных объектов. Техническим результатом является расширение функциональных возможностей системы, снижение себестоимости использования системы, повышение скорости и точности обработки и анализа изображений...
Тип: Изобретение
Номер охранного документа: 0002408931
Дата охранного документа: 10.01.2011
15.03.2019
№219.016.e14d

Способ управления сближением корабля с подвижной целью

Изобретение относится к области судовождения. Способ управления сближением корабля с целью базируется на использовании системы автоматического управления движением корабля по путевому углу. Величина заданного значения путевого угла формируется как угол пеленга (азимута) - φ плюс приращение...
Тип: Изобретение
Номер охранного документа: 0002467917
Дата охранного документа: 27.11.2012
20.03.2019
№219.016.e777

Способ определения физических свойств жидкостей или газов

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002415409
Дата охранного документа: 27.03.2011
20.03.2019
№219.016.e8e9

Способ формирования поступательного движения якоря с электромагнитным приводом

Изобретение относится к электротехнике, к электромагнитным приводам, которые могут быть в составе коммутационных аппаратов и в других электромагнитных системах, в которых требуется получить большой ход движения якоря. В частности, предложенный привод может быть использован в электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002436222
Дата охранного документа: 10.12.2011
20.03.2019
№219.016.e8ea

Магниторезистивный датчик

Изобретение относится к области магнитных датчиков и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока. Магниторезистивный датчик содержит подложку с...
Тип: Изобретение
Номер охранного документа: 0002436200
Дата охранного документа: 10.12.2011
04.04.2019
№219.016.fc1b

Способ образования движущей волны для перемещения транспортного средства

Изобретение относится к способу образования движущей волны для поступательного движения транспортных средств. Способ заключается в создании движущей волны за счет постоянно направленных знакопеременных гармонических сил, действующих в продольном по ходу движения направлении волны и сдвинутых по...
Тип: Изобретение
Номер охранного документа: 0002397097
Дата охранного документа: 20.08.2010
Показаны записи 71-73 из 73.
17.04.2019
№219.017.1621

Способ определения толщины диэлектрического покрытия

Способ определения толщины диэлектрического покрытия, нанесенного на металлическую подложку, включает возбуждение в диэлектрическом покрытии поверхностных электромагнитных волн и прием этих волн при их распространении по диэлектрическому покрытию. Согласно изобретению в диэлектрическом покрытии...
Тип: Изобретение
Номер охранного документа: 0002369862
Дата охранного документа: 10.10.2009
09.05.2019
№219.017.4e76

Устройство для измерения толщины диэлектрического покрытия

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения толщины диэлектрического покрытия, нанесенного на диэлектрическую основу. Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с излучателем 2, первый приемник 3, первый...
Тип: Изобретение
Номер охранного документа: 0002413180
Дата охранного документа: 27.02.2011
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД