Вид РИД
Изобретение
Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в условиях скользящего токосъема по схеме нагружения «вал - колодка», применяемой в узлах трения щетка - коллектор (кольцо) электродвигателя или электрогенератора.
Известен щеткодержатель электродвигателя, где щетка находится в наклонном (реактивном или волочащемся) положении [А.А.Дайлидко, О.А.Дайлидко. Электрические машины. Учебное иллюстрированное пособие. М.: ООО «НТ», 2002, с.43].
Недостатками щеткодержателя являются сложная конструкция и ограниченная возможность определить износостойкость и электросопротивление зоны трения, а также невозможность осуществления скользящего токосъема с повышенной плотностью тока без консистентной смазки.
Общим недостатком известных щеткодержателей является их конструктивная неспособность создавать давления по номинальной площади более 0,1 МПа. Кроме того, слабый теплоотвод не позволяет проводить ток с повышенной контактной плотностью. В результате известные щеткодержатели не пригодны для определения эксплуатационных (триботехнических) характеристик новых материалов в экстремальных условиях.
Наиболее близким техническим решением реализации сухого сильноточного скользящего электроконтакта является токосъемное устройство, состоящее из корпуса; подвижного элемента (щеткодержателя) с закрепленным в нем образцом испытуемого материала; контртела; штока, выполняющего функцию нагружения и фиксации подвижного элемента; токоприемной пластины, отводящей джоулеву теплоту и фиксирующую подвижный элемент в вертикальной плоскости [RU 95186 U1, H01R 39/04, опубл. 10.06.2010].
Недостатком устройства является невозможность закрепить щетку в наклонном (реактивном или волочащемся) положении для определения ее износостойкости.
Задачей изобретения является разработка устройства, позволяющего определять износостойкость материала щетки при трении с высокой контактной плотностью (более 50 А/см2) тока без смазки для случаев, когда щетка находится в наклонном (реактивном или волочащемся) положении.
Указанный технический результат достигается тем, что устройство для определения износостойкости наклонных токосъемных щеток при высокой контактной плотности тока состоит из корпуса; подвижного элемента (щеткодержателя) с закрепленным в последнем образцом испытуемого материала с помощью прижимной пластины; контртела машины трения.
При этом корпус устройства жестко соединен с валом, обеспечивающим возможность поворота корпуса в любую сторону в плоскости, параллельной направлению скольжения.
Устройство через текстолитовую плиту (стенку) закреплено на корпусе машины трения.
Вал корпуса свободно посажен на подшипники, которые закреплены на текстолитовой плите и противоположной стенке устройства.
Поворот корпуса устройства фиксируется индикатором поворота, установленным на стенке устройства.
Ток подводится к образцу испытуемого материала через каркас (стенки) устройства.
Изобретение иллюстрируется фиг.1-5.
На фиг.1, а,б,в представлена принципиальная схема устройства для определения износостойкости токосъемных щеток: а) 1 - корпус машины трения, 2 - плита-изолятор (текстолит), 2а - резьбовые отверстия, 3 - болт, 4 - стальная Г-образная пластина, 4а - стенка, 5 - обойма подшипника, 6 - корпус, 7 - вал, 8 - шкала углов поворота, 9 - втулка, 9а - стрелка-указатель, 10 - винт-фиксатор, 10а - болт обоймы подшипника, 11 - прижимная пластина, 12 - подвижный элемент, 13 - щетка-образец, 14 - контртело (сталь), 15 - выходной вал машины трения, 16 - крепежные винты, 17 - стальная Г-образная пластина; б) и в) - проекции Г-образной пластины 17, обращенной к наблюдателю эскиза
На фиг.2 представлено сечение элементов устройства для определения износостойкости токосъемных щеток (нулевой угол поворота): 2 - плита-изолятор (текстолит), 3 - болт, 4 - стальная пластина, 4а - стенка, 5 - обойма подшипника, 5а - подшипник, 6 - корпус, 6а - прорезь, 7 - вал, 8 - шкала углов поворота, 9 - втулка, 9а - стрелка-указатель, 10 - винт-фиксатор, 10а и 10б - болты крепления обоймы подшипника.
На фиг.3 представлено сечение элементов корпуса устройства для определения износостойкости токосъемных щеток при вертикальном расположении образца: 6 - корпус, 6а - прорезь, 7 - вал, 11 - прижимная пластина, 11a - винты, 11б - резьбовые отверстия под винты, 11в - отверстия под винты, 12 - подвижный элемент, 13 - щетка-образец.
На фиг.4 представлено расположение образца и подвижного элемента в рабочем состоянии (а) и общий вид фрикционного контакта (б): 6 - корпус, 6а - прорезь, 7 - вал, 11 - прижимная пластина, 11а - винты, 12 - подвижный элемент, 13 - щетка-образец, 14 - контртело.
На фиг.5 представлена схема создания наклона образца в условиях испытания: 1 - корпус машины трения, 2 - плита-изолятор (текстолит), 2б - продолговатые отверстия, 3 - болт, 4а - стенка, 7 - вал, 8 - шкала углов поворота, 9 - втулка, 9а - стрелка-указатель, 10 - винт-фиксатор, 12 - подвижный элемент, 13 - щетка-образец, 14 - контртело, 16 - крепежные винты.
Предлагаемое устройство работает следующим образом.
Скользящий токосъем осуществляется предлагаемым устройством, прикрепленным к корпусу 1 машины трения СМТ-1 (фиг.1). Устройство имеет четыре стенки, одна из которых (текстолитовая плита 2) крепится к корпусу 1 машины трения на штатные места посредством болтов 3. Два торца пластины 2 имеют резьбовые отверстия 2а, к которым привинчиваются Г-образные пластины 4 и 17 винтами 16. Г-образные пластины 4 и 17 соединены между собой винтами 16 на стенке 4а, к которой прикреплена шкала 8. Таким образом монтируется каркас предлагаемого устройства, чтобы электрически изолировать его от корпуса 1 машины трения СМТ-1.
К плите 2 и стенке 4а прикреплены болтами 10а и 10б две обоймы 5 металлических подшипников (или втулок) 5а (фиг.2). На подшипники 5а свободно посажен на вал 7, который жестко соединен с корпусом предлагаемого устройства 6. Корпус устройства 6 имеет цилиндрический канал (фиг.2 и фиг.3), в котором может перемещаться подвижный элемент 12.
Щетка-образец 13 устанавливается в посадочное место, расположенное в подвижном элементе 12, и прижимается к нему пластиной 11 с помощью винтов 11а (фиг.3). Пластина 11 свободно ходит в прорези 6а корпуса устройства 6 (фиг.2 и фиг.3а), что позволяет опускаться подвижному элементу 12 в процессе изнашивания щетки-образца 13 и одновременно держать ее определенную ориентацию относительно направления скольжения.
Наклонное положение щетки-образца 13, вставленной в корпус устройства 6, обеспечивается поворотом вала 7. Фиксация этого поворота производится винтом 10, который находится в резьбовом отверстии втулки 9, плотно посаженной на вал 7 (фиг.1a и фиг.2). Винт 10 упирается в стенку 4а. Индикатором этого поворота является стрелка 9а, которая крепится к втулке 9. Отсчет угла поворота производится по шкале 8, прикрепленной к стенке 4а. Поворот можно выполнить в направлении скольжения или против него. В этом случае щетка-образец 13, находясь в наклонном положении, может быть нагружена трением по стандартной схеме «вал - колодка» (фиг.4а). Внешний вид этой схемы представлен на фиг.4б.
Установка зоны фрикционного контакта относительно верхней точки окружности контртела производится болтами 3, которые находятся в продолговатых отверстиях 2б плиты 2 (фиг.5). В известных щеткодержателях наклон волочащихся щеток находится в пределах 2-7 градусов, наклон реактивных щеток не превышает 12 градусов, поэтому длина отверстий 2б может быть не более 20 мм.
Токоподводы крепятся к каркасу устройства (например, к стенке 4а) и к корпусу 1 машины трения (фиг.1, фиг.5). В этом случае ток проходит от верхнего вывода обмотки трансформатора через стенку 4а, далее через вал 7, корпус устройства 6, подвижный элемент 12, щетку-образец 13, зону трения, далее через контртело 14, корпус 1 машины трения, амперметр и к нижнему выводу обмотки трансформатора. Измерение контактного падения напряжения производится вольтметром. При этом потенциометрические выводы крепятся к стенке 4а и к центровочному углублению на торце вала 7 (фиг.5).
Основными критериями работоспособности материала щетки-образца 13 являются интенсивность изнашивания и электропроводность зоны контакта. В общем случае интенсивность изнашивания определяется по формуле:
где m - потеря массы образца за время t эксперимента. В предлагаемом устройстве подвижный элемент вместе с образцом 13 извлекается из корпуса 6 через его нижний срез. Образец 13, закрепленный пластиной 11 в подвижном элементе 12, взвешивается на аналитических весах до и после эксперимента, что позволяет определить потерю массы m. Зная время эксперимента t, можно рассчитать интенсивность изнашивания по формуле (1).
В некоторых случаях целесообразно знать линейную интенсивность изнашивания:
где h - изменение высоты образца в результате износа, L - путь трения. Тогда, не извлекая образец 13 из подвижного элемента 12, следует измерить высоту образца до и после эксперимента, что позволяет определить h. Задавая скорость скольжения v и время скольжения t, можно рассчитать путь трения L=νt. Зная плотность d образца 13, площадь s его сечения, можно найти соответствие I=dsνIh. Таким образом можно контролировать правильность определения I через определение Ih, и наоборот.
На фиг.1,а и фиг.5 видно, что токовая и потенциометрическая цепи выполнены таким образом, который позволяет определить электропроводность Э контакта по методу амперметра-вольтметра, т.е. Э=i/U, где i - контактная сила тока, U - контактное падение напряжения.
Из вышеизложенного видно, что электропроводность контакта и интенсивность изнашивания могут быть определены в зависимости от скорости скольжения и плотности тока. Кроме того, изменяя вес подвижного элемента 12, можно изменять давление в зоне трения. Поэтому можно заключить, что предлагаемое изобретение позволяет определять износостойкость щеточных материалов в широких диапазонах скорости скольжения, давления и контактной плотности тока при трении без смазки.



