×
27.05.2013
216.012.4488

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА НАГАРТОВАННОЙ МАЛОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов. Для повышения выхода годного за счет получения заданного предела текучести листовой стали осуществляют горячую прокатку полос из стали, имеющей следующий химический состав, мас.%: углерод 0,02-0,11, марганец 0,20-0,65, кремний 0,01-0,17, алюминий не более 0,10, железо и примеси - остальное, последующую многопроходную холодную прокатку до конечной толщины. Горячую прокатку полос ведут до толщины, определяемой по формуле: где H, h - толщина горячекатаной полосы и конечная толщина холоднокатаной листовой стали; ; σ - предел текучести горячекатаной полосы; σ - заданное значение временного сопротивления разрыву холоднокатаной полосы. 1 табл., 2 пр.
Основные результаты: Способ производства нагартованной малоуглеродистой листовой стали, включающий горячую прокатку непрерывнолитых слябов из стали, имеющей следующий химический состав, мас.%: последующую многопроходную холодную прокатку полосы до конечной толщины h, при этом горячую прокатку полос ведут до толщины Н, определяемой по формуле: где ε - величина относительного обжатия холодной прокатки, %; σ - предел текучести горячекатаной полосы, кг/мм;σ - заданное значение предела текучести холоднокатаной полосы, кг/мм.

Изобретение относится к прокатному производству и может быть использовано для получения холоднокатаных полос и лент, поставляемых потребителям в нагартованном состоянии, например, для упаковки грузов.

Известен способ производства листовой стали с заданным показателем предела текучести, включающий горячую прокатку полос, согласно которому удельный расход воды, подаваемой на охлаждение полос, устанавливают по эмпирической регрессионной зависимости исходя из химического состава стали, температур конца прокатки и смотки, толщины полосы [1].

Однако данный способ не пригоден для производства нагартованной малоуглеродистой листовой стали с заданным пределом текучести.

Известен также способ производства малоуглеродистой листовой стали с заданным показателем предела текучести, включающий горячую прокатку полос до промежуточной толщины 2,0-3,5 мм при регламентированных температурных режимах, травление окалины, холодную прокатку до конечной толщины, рекристаллизационный отжиг и дрессировку. При этом малоуглеродистая сталь содержит углерод, марганец, кремний, алюминий (или без него), железо и примеси [2].

Недостатки известного способа состоят в том, что при производстве листовой стали в нагартованном (наклепанном) состоянии непосредственно после холодной прокатки он не обеспечивает получения заданного предела текучести. Это является причиной отбраковки металлопроката.

Наиболее близким аналогом к предлагаемому изобретению является способ производства холоднокатаных полос из стали, содержащей углерод, марганец, кремний, алюминий, легирующие элементы, примеси и железо.

Стальной сляб подвергают горячей прокатке в полосу, травлению и холодной прокатке до конечной толщины. Горячую прокатку ведут с регламентированными температурами конца прокатки и смотки, а толщину горячекатаной полосы hгк устанавливают по следующей экспериментальной зависимости:

где hхк - конечная толщина холоднокатаной полосы [3].

Недостаток известного способа состоит в том, что он не позволяет определить толщину горячекатаной полосы из малоуглеродистой стали, из которой в результате холодной прокатки до конечной толщины будет гарантированно получена нагартованная листовая сталь с заданным пределом текучести. Это приводит к снижению выхода годного.

Техническая задача, решаемая изобретением, состоит в повышении выхода годного за счет получения заданного предела текучести листовой стали.

Для решения поставленной технической задачи в известном способе производства нагартованной малоуглеродистой листовой стали, содержащей углерод, марганец, кремний, алюминий (или без него), железо и примеси, включающем горячую прокатку полос и последующую их многопроходную холодную прокатку до конечной толщины, согласно изобретению горячую прокатку полос ведут до толщины, определяемой по формуле:

,

где Н, h - толщина горячекатаной полосы и конечная толщина холоднокатаной листовой стали;

;

σгк - предел текучести горячекатаной полосы;

σхк - заданное значение предела текучести холоднокатаной полосы.

Кроме того, малоуглеродистая сталь имеет следующий химический состав, мас.%:

Углерод 0,02-0,11
Марганец 0,20-0,65
Кремний 0,01-0,17
Алюминий не более 0,10
Железо и примеси остальное.

Сущность изобретения состоит в следующем. При производстве нагартованной стали необходимо за счет выбора режима обжатия решить одновременно две задачи: получить холоднокатаную полосу конечной толщины и при этом, за счет деформационного упрочнения (наклепа), обеспечить заданное потребителем заданное значение предела текучести. Нестабильность химического состава малоуглеродистой стали, деформационных и температурных режимов горячей прокатки, изменение толщины горячекатаных полос - все это приводит к разбросу фактически полученных значений предела текучести нагартованной малоуглеродистой листовой стали и снижению выхода годного.

Результаты проведенных экспериментальных исследований и их математическая обработка с использованием пошагового регрессионного анализа позволили установить в аналитическом виде предложенную формулу для расчета необходимой оптимальной величины относительного обжатия ε исходя из предела текучести σгк горячекатаной полосы и заданного значения предела текучести σхк холоднокатаной полосы. Использование в предложенной формуле значения σгк позволяет учесть влияние нестабильности химического состава малоуглеродистой стали и температурно-деформационных режимов горячей прокатки полос на свойства наклепанной холоднокатаной стали, что повышает точность расчета относительного обжатия ε.

В дальнейшем, с использованием значения ε, по соотношению определяют точное значение толщины горячекатаной полосы Н, из которой после обжатия с относительной величиной ε будет получена холоднокатаная полоса конечной толщины h.

Следует отметить, что численные значения коэффициентов регрессии: 0,01, 2,5·10-4 и 0,018 в формуле были получены по экспериментальным данным. Применительно к малоуглеродистым сталям, соответствующим предложенному химическому составу, мас.%:

Углерод 0,02-0,11
Марганец 0,20-0,65
Кремний 0,01-0,17
Алюминий не более 0,10
Железо и примеси остальное,

разброс значений σхк нагартованной листовой стали от номинального значения, как показали эксперименты, не превышает ±5%. Благодаря этому выход годного приближается к 100%. Это особенно важно, когда потребитель регламентирует допустимое отклонение σхк в более узком диапазоне значений.

При запредельных значениях концентраций химических элементов в стали разброс значений σхк возрастает. Но в случаях, когда потребитель регламентирует отклонение σхк от номинального значения в диапазоне ±10% и более, допустимо использование малоуглеродистой стали с иным содержанием указанных химических элементов.

Углерод и марганец являются основными упрочняющими элементами в нагартованной стали. При снижении содержания углерода менее 0,02% или марганца менее 0,20% предел текучести σхк листовой нагартованной малоуглеродистой стали снижается относительно заданного значения, а при содержании углерода более 0,11% или марганца более 0,65% предел текучести σхк увеличивается. И в том, и в другом случае это приводит к снижению выхода годного.

Кремний увеличивает скорость нарастания предела текучести σхк по мере увеличения ε. При концентрации кремния более 0,17% продольная разнотолщинность горячекатаных полос приводит к увеличению разброса σхк и снижению выхода годного. Снижение концентрации кремния менее 0,01% требует повышения относительного обжатия ε, что вызывает растрескивание кромок холоднокатаных полос и снижает выход годного.

Алюминий является стабилизирующим элементом, благодаря чему нагартованная малоуглеродистая сталь длительное время сохраняет стабильное значение σхк. Если дальнейшая переработка нагартованной малоуглеродистой стали осуществляется незамедлительно, то алюминий в ее состав можно не вводить. Однако при содержании алюминия более 0,10% из-за наличия ликвации в холоднокатаных полосах из малоуглеродистой стали формируются неравномерные свойства, что снижает выход годного.

Примеры реализации способа

Пример 1. По требованиям потребителей для изготовления топливных фильтров дизельных двигателей внутреннего сгорания необходима нагартованная полоса толщиной h=0,6 мм из малоуглеродистой стали с номинальным пределом текучести σхк=90 кг/мм2 ±10%. То есть предел текучести должен быть в диапазоне: σхк=81…99 кг/мм2. Для производства ленты используют непрерывно литые слябы из малоуглеродистой стали следующего состава, мас.%:

С Mn Si Al Fe + примеси
0,08 0,70 0,20 0,10 Остальное.

По справочным данным определяют значение предела текучести горячекатаной стали данного состава: σхк=30,8 кг/мм2. С использованием предложенной регрессионной зависимости производят расчет параметра ε холодной деформации:

.

После этого рассчитывают толщину горячекатаной полосы Н:

.

Непрерывно литые слябы прокатывают на непрерывном широкополосном стане 2000 в полосы толщины Н=2,07 мм при температуре конца прокатки 890°С, охлаждают водой на отводящем рольганге до температуры 560°С и сматывают в рулоны.

Горячекатаные полосы после охлаждения подвергают солянокислотному травлению. Травленые полосы прокатывают на непрерывном 5-клетевом стане кварто 1700 в полосы конечной толщины h=0,6 мм, после чего производят отбор проб и измерение предела текучести: σхк=88,0…95,0 кг/мм2. Благодаря тому что измеренные значения предела текучести нагартованных холоднокатаных полос укладываются в диапазон допустимых значений σхк=85 кг/мм2 ±10%, выход годного составляет W=98,6%.

Пример 2. По требованиям потребителей для автоматизированной упаковки сортового проката необходима холоднокатаная нагартованная лента из малоуглеродистой стали толщиной h=1,5 мм с номинальным пределом текучести σхк=60 кг/мм2 ±5%=57…63 кг/мм2. Поскольку допустимый диапазон изменения предела текучести вдвое уже, чем в примере 1, то для производства ленты используют непрерывно литые слябы из малоуглеродистой стали предложенного химического состава, мас.%:

С Mn Si Al Fe + примеси
0,06 0,40 0,09 0,05 Остальное.

По справочным данным определяют значение предела текучести горячекатаной стали данного состава: σхк=28 кг/мм2, и осуществляют расчет параметра ε холодной деформации:

.

Затем производят расчет толщины горячекатаной полосы H:

.

Непрерывно литые слябы нагревают до температуры 1250°С, прокатывают на непрерывном широкополосном стане 2000 в полосы толщиной 1,67 мм и сматывают в рулоны. Затем горячекатаные полосы подвергают солянокислотному травлению и холодной прокатке на непрерывном 4-клетевом стане 1400 до конечной толщины h=1,5 мм. В результате холодной прокатки нагартованные полосы имеют значение предела текучести σхк=60…61 кг/мм2. Благодаря этому выход годного составляет W=99,9%.

Варианты реализации способа по примеру 2 для малоуглеродистых сталей с различным химическим составом приведены в таблице.

Таблица
Предел текучести холоднокатаных упаковочных лент и выход годного
№ п/п Содержание химических элементов, мас.% σхк, кг/мм2 W, %
С Mn Si Al Fe + примеси
1 0,01 0,19 0,009 0,03 Остальное 53-63 75,6
2 0,02 0,20 0,01 - -:- 58-60 99,8
3 0,06 0,40 0,09 0,05 -:- 60-61 99,9
4 0,11 0,65 0,17 0,10 -:- 61-63 99,8
5 0,12 0,67 0,18 0,11 -:- 58-66 74,2

Из данных, приведенных в таблице, следует, что в случае реализации предложенного способа с использованием малоуглеродистой стали предложенного состава (варианты №2-4) достигается повышение выхода годного за счет получения заданного значения предела текучести нагартованной ленты: разброс значений σхк не превышает 2 кг/мм2. Это важно для стабильной работы агрегата автоматизированной упаковки.

При запредельных значениях заявленного химического состава (варианты 1 и 5) разброс значений предела текучести возрастает, что ведет к снижению выхода годного.

Технико-экономические преимущества предложенного способа состоят в том, что прокатка горячекатаных полос с толщиной, определенной по предложенным экспериментально определенным зависимостям, позволяет при последующей холодной прокатке осуществить деформационное упрочнение (наклеп) холоднокатаных полос из малоуглеродистых сталей до заданного значения предела текучести. В результате достигается увеличение выхода годного. Помимо этого использование малоуглеродистой стали предложенного состава позволяет дополнительно снизить разброс значений предела текучести, что является важным для ряда потребителей нагартованного холоднокатаного листового проката.

В качестве базового объекта при оценке технико-экономической эффективности предложенного способа принят ближайший аналог [3]. Использование предложенного способа позволяет повысить рентабельность производства нагартованной малоуглеродистой листовой стали на 10-15%.

Литература

1. Авт. свид. РФ №1493339, МПК В21В 1/26, 1989 г.

2. М.А.Беняковский и др. Производство автомобильного листа. М.: Металлургия, 1979, с.30-31, 98, 146-147.

3. Патент РФ №2432404, МПК C21D 8/04, C21D 9/48, С22С 38/16, 2011 г.

Способ производства нагартованной малоуглеродистой листовой стали, включающий горячую прокатку непрерывнолитых слябов из стали, имеющей следующий химический состав, мас.%: последующую многопроходную холодную прокатку полосы до конечной толщины h, при этом горячую прокатку полос ведут до толщины Н, определяемой по формуле: где ε - величина относительного обжатия холодной прокатки, %; σ - предел текучести горячекатаной полосы, кг/мм;σ - заданное значение предела текучести холоднокатаной полосы, кг/мм.
СПОСОБ ПРОИЗВОДСТВА НАГАРТОВАННОЙ МАЛОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ
СПОСОБ ПРОИЗВОДСТВА НАГАРТОВАННОЙ МАЛОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ
СПОСОБ ПРОИЗВОДСТВА НАГАРТОВАННОЙ МАЛОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ
СПОСОБ ПРОИЗВОДСТВА НАГАРТОВАННОЙ МАЛОУГЛЕРОДИСТОЙ ЛИСТОВОЙ СТАЛИ
Источник поступления информации: Роспатент

Показаны записи 211-220 из 266.
20.07.2015
№216.013.648d

Способ определения напряжений в массиве горных пород

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела...
Тип: Изобретение
Номер охранного документа: 0002557288
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648e

Установка для подготовки шахтного метана к утилизации

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями. Техническим результатом является повышение эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002557289
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65ca

Теплоноситель для солнечного коллектора

Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для...
Тип: Изобретение
Номер охранного документа: 0002557611
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6894

Способ электролитического получения мелкодисперсных порошков серебра

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм и свободной азотной кислоты 5-20 г/дм при постоянном токе плотностью 1,5-2,0 А/дм. В качестве катодов используют титановые...
Тип: Изобретение
Номер охранного документа: 0002558325
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6982

Способ определения объема скважины

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины,...
Тип: Изобретение
Номер охранного документа: 0002558563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a8

Способ получения карбида хрома crc

Изобретение может быть использовано в металлургии. Для получения карбида хрома CrC смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин. Затем шихту нагревают...
Тип: Изобретение
Номер охранного документа: 0002558601
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6a09

Литниковая система для центробежного фасонного литья с вертикальной осью вращения

Изобретение относится к области литейного производства. Литниковая система содержит центральный стояк с расширяющейся нижней частью, горизонтальные литниковые ходы, вертикальный литниковый ход, литниковые питатели отливки, центральный металлоприемник, горизонтальный кольцевой коллектор....
Тип: Изобретение
Номер охранного документа: 0002558698
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cb7

Способ газодинамической отсечки шлака от металла при выпуске плавки из дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к дуговым печам, в которых используют газодинамическую отсечку шлака от металла при выпуске плавки. Отсечку шлака осуществляют посредством двух инертных газовых потоков, первый из которых подают в виде струй азота или аргона снизу в объем...
Тип: Изобретение
Номер охранного документа: 0002559389
Дата охранного документа: 10.08.2015
Показаны записи 211-220 из 295.
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f7

Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической...
Тип: Изобретение
Номер охранного документа: 0002561788
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77fb

Способ добычи железомарганцевых конкреций из илистых донных отложений и устройство для его осуществления

Группа изобретений относится к способу и устройству для подводной добычи железомарганцевых конкреций из илистых донных отложений. Технический результат заключается в повышении эффективности использования трала за счет уменьшения количества холостых ходов, повышении полноты выемки полезного...
Тип: Изобретение
Номер охранного документа: 0002562304
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0f

Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец

Изобретение относится к пирометаллургии. Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец, включает плавку лома при температуре нагрева 1150-1200°C, охлаждение полученного расплава со скоростью от 1950°C/час до 2050°C/час до температуры 400°C и плавку...
Тип: Изобретение
Номер охранного документа: 0002563612
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e28

Способ взрывания на открытых разработках разнопрочных слоистых массивов горных пород

Изобретение относится к горной промышленности и строительству, а именно к способам взрывания на открытых разработках слоистых массивов горных пород с нижним менее прочным слоем породы и верхним более прочным слоем. Способ включает бурение нисходящих скважин, их заряжание комбинированными...
Тип: Изобретение
Номер охранного документа: 0002563893
Дата охранного документа: 27.09.2015
+ добавить свой РИД