×
20.05.2013
216.012.427e

Результат интеллектуальной деятельности: АЭРОДИНАМИЧЕСКИЙ СТЕНД ДЛЯ ПРОВЕДЕНИЯ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПО ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ МГД-МЕТОДАМИ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ РАБОЧЕГО ГАЗА ВЫСОКОТЕМПЕРАТУРНОГО ВОДОРОДА (H)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки, МГД-канал, магнит, системы управления и измерения. Для проведения исследований по генерации электроэнергии с рабочим газом водородом в качестве источника высокотемпературного газа использован электродуговой подогреватель, стенд дополнительно оснащен рампой для хранения водорода и нейтрального газа с системами подачи этих газов в рабочий тракт, регулирования и измерения их параметров, а также системами измерения генерируемой электроэнергии и системой сигнализации при пожароопасности. Аэродинамический стенд позволяет отработать технологию использования высокотемпературного водорода в магнитогазодинамических устройствах без влияния факторов, снижающих эффективность преобразования тепловой энергии в электрическую, и дать рекомендации по созданию МГД-генераторов нового типа. 3 ил.
Основные результаты: Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии МГД-методами с использованием в качестве рабочего газа высокотемпературного водорода Н, включающий источник высокотемпературного газа, устройства для создания потока газа, устройство подачи присадки в поток газа для увеличения его электропроводности, МГД-канал, магнит, системы управления потоком и измерения технологических параметров, отличающийся тем, что в качестве источника высокотемпературного газа использован электродуговой подогреватель для нагрева водорода до необходимой температуры и получения потока с необходимой скоростью, стенд дополнительно оснащен рампой для хранения водорода и нейтрального газа с системой подачи газов в рабочий тракт, регулирования и измерения параметров этих газов, стенд оснащен системой измерения генерируемой электроэнергии и системой сигнализации при пожароопасности.

Предлагаемое изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии при взаимодействии движущегося потока газа и электромагнитного поля.

Преимуществом МГД-генераторов в сравнении, например, с турбогенераторами является то, что преобразование тепловой энергии в электрическую осуществляется без применения движущихся деталей, что дает возможность существенно поднять температуру газа (в турбогенераторах T≈1200 K, в МГД - генераторах Т≈3500 К), а значит, увеличить коэффициент полезного действия (КПД).

Известны магнитогазодинамические (МГД) генераторы для получения электроэнергии, работающие на принципе взаимодействия электромагнитного поля с потоком электропроводящего газа, например [Райзер Ю.П. Физика газового разряда. М.: «Наука», 1992 г. - с.521]. В устройстве электропроводный поток воздуха движется между полюсами постоянного магнита. При этом в потоке индуцируется электрическое поле, пропорциональное скорости потока и магнитной индукции.

Недостатком генераторов такого типа является использование для нагрева рабочего газа реакции горения углеводородных и ракетных топлив, у продуктов сгорания которых высокое значение молекулярного веса, что не позволяет получить достаточно высокие физические скорости потока и не дает возможности повысить коэффициент полезного действия преобразования энергий в МГД-генераторах по сравнению с турбогенераторами.

В качестве прототипа взят магнитогазодинамический генератор из работы [Основы технической магнитной газодинамики. М.: «Мир», 1968 г., с.463]. Генератор содержит следующие устройства:

- камеру сгорания для сжигания углеводородного топлива в атмосфере нагретого воздуха, которая является источником высокотемпературного газа;

- устройство для ввода присадки в продукт горения для повышения его электропроводности;

- сопло для разгона потока газа;

- постоянный магнит, между полюсами которого движется поток;

- МГД-канал, представляющий собой отсек, в котором на двух противоположных стенках установлены изолированные друг от друга электроды, а две другие стенки выполнены из электроизоляционного материала.

При прохождении электропроводного потока в магнитном поле между электродами МГД-канала генерируется напряжение.

Однако в прототипе, как и в других МГД-генераторах описанного типа, достичь существенного повышения КПД в сравнении с турбогенераторами не удалось. Опять-таки потому, что в качестве рабочего газа использовались продукты сгорания углеводородных или ракетных топлив, имеющие высокие значения молекулярного веса. Как сказано выше, это не позволяет получить достаточно высокие физические скорости потока газа (~4 км/с) и повысить КПД преобразования энергии.

Из изложенного ясно, что улучшению технологии и эффекта МГД-преобразования энергии может способствовать использование в качестве рабочего газа водорода, у которого молекулярный вес в ~20 раз меньше, чем у продуктов сгорания углеводородных или ракетных топлив. Это дает возможность достичь скорости потока ~4·103 м/с, увеличить напряжение на электродах МГД-канала, увеличить КПД.

Получение высокотемпературного водорода возможно в результате химических реакций. Одной из которых, например, является реакция взаимодействия мелкодисперсного алюминия с парами воды

2Аl+3Н2О⇆Аl2О3+3Н2

Однако образовавшийся в результате реакции в виде мелкодисперсного аэрозоля Аl2O3 опять-таки приводит к снижению КПД.

Так как предполагается разработка на принципе использования высокотемпературного Н2 крупных промышленных МГД генераторов для аварийного энергоснабжения городов и населенных пунктов, необходимо решить комплекс проблем. Определить технические решения по очистке водорода от других продуктов реакции (например, от частиц Аl2O3), для создания высокой электропроводности среды разработать способы смешения присадки с легкими атомами и молекулами H2, выявить особенности генерации электроэнергии в МГД-каналах при использовании в качестве рабочего газа высокотемпературного водорода.

Задачей и техническим результатом изобретения является создание аэродинамического стенда (АДС), который будет использован для решения указанных проблем.

Решение задачи и технический результат достигаются тем, что аэродинамический стенд, являющийся прообразом МГД-генератора с использованием в качестве рабочего газа высокотемпературного водорода, включающий источник высокотемпературного газа, устройства для создания потока газа, устройство подачи присадки в поток газа для увеличения его электропроводности, МГД-канал, магнит, системы управления потоком и измерения технологических параметров, оснащен в качестве источника высокотемпературного газа электродуговым подогревателем для нагрева водорода до температуры ≈3500 К и получения скорости потока ~4·103 м/с, также оснащен рампой для хранения водорода и нейтрального газа с системой подачи газов в рабочий тракт, устройствами для регулирования и измерения параметров этих газов, системой измерения генерируемой электроэнергии, системой сигнализации при пожароопасности.

Схемы, поясняющие изобретение, приведены на фигурах 1, 2, 3.

На фигуре 1 приведена схема АДС.

На фигуре 2 представлен план размещения стенда в помещении.

На фигуре 3 представлена подробная схема соединения баллонов водорода и азота, размещенных на рампе с регулирующей и измерительной аппаратурой.

В газ, нагретый в электродуговом подогревателе 2 (фиг.1), подается присадка легкоионизируемых элементов (Na, K) из устройства подачи присадки 1. После смешения присадки с газом их смесь поступает в сопло 3, где ускоряется до заданной скорости (4·103 м/с). Поток с указанной скоростью поступает в МГД канал 4, на стенках которого установлены электроды (64 пары, изолированные друг от друга), магнитное поле в канале создается с помощью магнитов 6. На выходе из МГД канала 4 установлено вторичное сопло 8 с измерителем давления 9. Выход из вторичного сопла расположен в рабочей камере 10. Из рабочей камеры газ поступает в выхлопной тракт 11, который заканчивается вакуумной емкостью. Напряжение на электродах фиксируется устройством 12. Трассы подачи на стенд водорода и нейтрального газа азота показаны на позиции 5.

На фигуре 2 (сквозная нумерация с фигурой 1):

13 - стенд;

14 - трассы подачи к стенду водорода и азота, проходящие по наружным стенам промышленной аэродинамической трубы и пристройки, в которой размещен стенд;

15 - рампа для хранения баллонов Н2 и N2;

16 - помещение промышленной трубы рядом со стендом;

17 - система сигнализации при пожароопасности;

18 - система клапанов;

19 - вакуумная камера;

20 - клапаны и вентили для управления водородом и азотом.

На фигуре 3 (отдельная нумерация):

1 - узел мерного сопла;

2 - трасса подачи газов к ЭДП;

3 - манометр;

4 - отсечные клапаны;

5 - манометр (водород);

6 - вентиль (водород);

7 - вентиль (азот);

8, 13 - коллекторы (водород, азот);

9 - баллоны Н2;

10 - вентили и редукторы;

11 - предохранительный клапан;

12 - трасса к вакуумной камере;

14 - баллоны N2;

15 - соединительные шланги (дюрит);

16 - обратный клапан.

Работа стенда осуществляется следующим образом. Включают устройства для создания потока газа. Для этого выхлопной тракт 11 (фиг.1) соединяют с вакуумной камерой 19 (фиг.2), в которой создают давление ~10 Па, открывают клапан №1 (4 на фиг.3), по трассе 5 (фиг.1) заполняют камеру источника высокотемпературного газа (ЭДП) азотом от рампы 15 (фиг.2) до давления Р0≈2·105 Па, включают напряжение на ЭДП и реализуют пуск с азотом. Не отключая азот, открывают редукторы водородных баллонов на рампе и через клапан №2 (4 на фиг.3) подают водород в камеру ЭДП. При этом клапан №1 (4 на фиг.3) закрывают, подачу азота прекращают, пуск реализуют на водороде. Вводят присадку 1 (фиг.1), включают электромагнит 6 (фиг.1), регистрируют напряжение на электродах МГД-канала 7 (фиг.1) с помощью системы измерения генерируемой энергии 12 (фиг.1). Система сигнализации пожароопасности 17 (фиг.2) срабатывает автоматически при аварийных ситуациях. Завершается пуск отключением подачи водорода и продувкой трассы азотом.

Таким образом, предлагаемое изобретение позволяет провести фундаментальные исследования по генерации электроэнергии МГД-методами с использованием в качестве рабочего газа водорода, нагреваемого в электродуговом подогревателе (ЭДП) до температур 3500 К при скорости потока водорода ~4·103 м/с, отработать технологию использования высокотемпературного водорода в магнитогазодинамических устройствах без влияния факторов, снижающих эффективность преобразования тепловой энергии в электрическую, дать рекомендации по созданию МГД-генераторов нового типа.

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии МГД-методами с использованием в качестве рабочего газа высокотемпературного водорода Н, включающий источник высокотемпературного газа, устройства для создания потока газа, устройство подачи присадки в поток газа для увеличения его электропроводности, МГД-канал, магнит, системы управления потоком и измерения технологических параметров, отличающийся тем, что в качестве источника высокотемпературного газа использован электродуговой подогреватель для нагрева водорода до необходимой температуры и получения потока с необходимой скоростью, стенд дополнительно оснащен рампой для хранения водорода и нейтрального газа с системой подачи газов в рабочий тракт, регулирования и измерения параметров этих газов, стенд оснащен системой измерения генерируемой электроэнергии и системой сигнализации при пожароопасности.
АЭРОДИНАМИЧЕСКИЙ СТЕНД ДЛЯ ПРОВЕДЕНИЯ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПО ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ МГД-МЕТОДАМИ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ РАБОЧЕГО ГАЗА ВЫСОКОТЕМПЕРАТУРНОГО ВОДОРОДА (H)
АЭРОДИНАМИЧЕСКИЙ СТЕНД ДЛЯ ПРОВЕДЕНИЯ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПО ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ МГД-МЕТОДАМИ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ РАБОЧЕГО ГАЗА ВЫСОКОТЕМПЕРАТУРНОГО ВОДОРОДА (H)
АЭРОДИНАМИЧЕСКИЙ СТЕНД ДЛЯ ПРОВЕДЕНИЯ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПО ГЕНЕРАЦИИ ЭЛЕКТРОЭНЕРГИИ МГД-МЕТОДАМИ С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ РАБОЧЕГО ГАЗА ВЫСОКОТЕМПЕРАТУРНОГО ВОДОРОДА (H)
Источник поступления информации: Роспатент

Показаны записи 61-70 из 255.
10.03.2015
№216.013.3122

Механический демпфер низкоамплитудных колебаний с вращательными парами трения

Изобретение относится к машиностроению. На основании демпфера шарнирно закреплена кольцевая фасонная пружина. Внутри основания установлено стальное кольцо. На внутреннюю поверхность кольца нанесено покрытие с заданными трибологическими характеристиками. Внутри кольца расположен вал-эксцентрик,...
Тип: Изобретение
Номер охранного документа: 0002544046
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e73

Аэродинамический профиль поперечного сечения несущей поверхности (варианты)

Группа изобретений относится к области авиации. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной B. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями...
Тип: Изобретение
Номер охранного документа: 0002547475
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b6

Стенд для испытаний фюзеляжа летательного аппарата на выносливость

Изделие относится к области испытательной техники, в частности к устройствам для прочностных испытаний фюзеляжей летательных аппаратов. Стенд содержит систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с...
Тип: Изобретение
Номер охранного документа: 0002548054
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42da

Способ изготовления термоанемометра (варианты)

Изобретение относится к измерительной технике и может быть использовано в аэродинамических экспериментах, в энергетике турбинных машин при исследовании структуры потока газа в жидкости. Конструкция датчика разработана на базе пленки из полиимида. На этой пленке формируют конструкцию датчика...
Тип: Изобретение
Номер охранного документа: 0002548612
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a7f

Треугольное крыло сверхзвукового летательного аппарата

Изобретение относится к области авиационной техники. Треугольное крыло сверхзвукового летательного аппарата имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, заднюю кромку, расположенную в перпендикулярной к...
Тип: Изобретение
Номер охранного документа: 0002550578
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a8a

Преобразуемый летательный аппарат вертикального взлета и посадки (варианты)

Изобретение относится к области авиации, в частности к конструкциям комбинированных летательных аппаратов. Летательный аппарат содержит обтекатель втулки несущего винта, выполненный в виде несущего корпуса либо крыла малого удлинения с профилем, часть контура верхней поверхности которого близка...
Тип: Изобретение
Номер охранного документа: 0002550589
Дата охранного документа: 10.05.2015
20.07.2015
№216.013.626e

Устройство для повышения несущих свойств летательного аппарата

Изобретение относится к авиационной технике и может быть использовано на гражданских самолетах со стреловидным крылом, образованным по сверхкритическим профилям, и предкрылком в компоновке низкоплан при дозвуковой и околозвуковой скоростях полета. Устройство для повышения несущих свойств...
Тип: Изобретение
Номер охранного документа: 0002556745
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.693c

Оболочка отсека гермофюзеляжа из композиционных материалов

Изобретение относится к области авиационной техники и касается силовых авиационных конструкций из полимерных композиционных материалов, в частности к силовой конструкции отсека фюзеляжа гражданского самолета. Оболочка отсека гермофюзеляжа из композиционных материалов содержит жесткий сетчатый...
Тип: Изобретение
Номер охранного документа: 0002558493
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.693d

Система защиты силовых композитных элементов авиационных конструкций

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите. Система защиты силовых композитных элементов содержит внешнюю и внутреннюю обшивки, промежуточный слой защитного наполнителя....
Тип: Изобретение
Номер охранного документа: 0002558494
Дата охранного документа: 10.08.2015
Показаны записи 61-70 из 137.
10.03.2015
№216.013.3122

Механический демпфер низкоамплитудных колебаний с вращательными парами трения

Изобретение относится к машиностроению. На основании демпфера шарнирно закреплена кольцевая фасонная пружина. Внутри основания установлено стальное кольцо. На внутреннюю поверхность кольца нанесено покрытие с заданными трибологическими характеристиками. Внутри кольца расположен вал-эксцентрик,...
Тип: Изобретение
Номер охранного документа: 0002544046
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e73

Аэродинамический профиль поперечного сечения несущей поверхности (варианты)

Группа изобретений относится к области авиации. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной B. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями...
Тип: Изобретение
Номер охранного документа: 0002547475
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b6

Стенд для испытаний фюзеляжа летательного аппарата на выносливость

Изделие относится к области испытательной техники, в частности к устройствам для прочностных испытаний фюзеляжей летательных аппаратов. Стенд содержит систему циклических нагрузок сжатым воздухом, состоящую из источника сжатого воздуха, основного трубопровода подачи сжатого воздуха в фюзеляж с...
Тип: Изобретение
Номер охранного документа: 0002548054
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42da

Способ изготовления термоанемометра (варианты)

Изобретение относится к измерительной технике и может быть использовано в аэродинамических экспериментах, в энергетике турбинных машин при исследовании структуры потока газа в жидкости. Конструкция датчика разработана на базе пленки из полиимида. На этой пленке формируют конструкцию датчика...
Тип: Изобретение
Номер охранного документа: 0002548612
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a7f

Треугольное крыло сверхзвукового летательного аппарата

Изобретение относится к области авиационной техники. Треугольное крыло сверхзвукового летательного аппарата имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, заднюю кромку, расположенную в перпендикулярной к...
Тип: Изобретение
Номер охранного документа: 0002550578
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4a8a

Преобразуемый летательный аппарат вертикального взлета и посадки (варианты)

Изобретение относится к области авиации, в частности к конструкциям комбинированных летательных аппаратов. Летательный аппарат содержит обтекатель втулки несущего винта, выполненный в виде несущего корпуса либо крыла малого удлинения с профилем, часть контура верхней поверхности которого близка...
Тип: Изобретение
Номер охранного документа: 0002550589
Дата охранного документа: 10.05.2015
20.07.2015
№216.013.626e

Устройство для повышения несущих свойств летательного аппарата

Изобретение относится к авиационной технике и может быть использовано на гражданских самолетах со стреловидным крылом, образованным по сверхкритическим профилям, и предкрылком в компоновке низкоплан при дозвуковой и околозвуковой скоростях полета. Устройство для повышения несущих свойств...
Тип: Изобретение
Номер охранного документа: 0002556745
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.693c

Оболочка отсека гермофюзеляжа из композиционных материалов

Изобретение относится к области авиационной техники и касается силовых авиационных конструкций из полимерных композиционных материалов, в частности к силовой конструкции отсека фюзеляжа гражданского самолета. Оболочка отсека гермофюзеляжа из композиционных материалов содержит жесткий сетчатый...
Тип: Изобретение
Номер охранного документа: 0002558493
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.693d

Система защиты силовых композитных элементов авиационных конструкций

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите. Система защиты силовых композитных элементов содержит внешнюю и внутреннюю обшивки, промежуточный слой защитного наполнителя....
Тип: Изобретение
Номер охранного документа: 0002558494
Дата охранного документа: 10.08.2015
+ добавить свой РИД