×
20.05.2013
216.012.426e

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ ГЕНЕРАТОР НА ОСНОВЕ ВОДОРОДНО-КИСЛОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СПОСОБ УДАЛЕНИЯ ВОДЫ И ТЕПЛА ИЗ ЗОНЫ РЕАКЦИИ БАТАРЕИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

№ охранного документа
0002482576
Дата охранного документа
20.05.2013
Аннотация: Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ) и может быть использовано при производстве и эксплуатации указанных энергоустановок. Технический результат заключается в том, что предлагаемое изобретение позволяет: снизить энергозатраты за счет подачи водорода в батарею топливных элементов, разогретым до температуры конденсации паров воды; увеличить надежность и ресурс ЭХГ, так как агрегаты постоянно работают в условиях без резких перепадов температуры, обеспечивая при этом непрерывное удаление конечных продуктов токообразующей реакции. Электрохимический генератор на основе водородно-кислородных топливных элементов содержит контур сброса тепла с датчиком температуры и насосом, выход которого соединен с входом радиатора-излучателя, батарею топливных элементов с трубопроводами подвода водорода и кислорода, с шинами выхода электричества, с клапаном сброса воды, систему управления и контроля электрохимического генератора, контур прокачки водорода, включающий вентилятор, смеситель по водороду и воде с штуцерами входа воды, входа водорода и выхода смеси водорода и воды из батареи топливных элементов, датчик температуры. Предложен также способ удаления воды и тепла из зоны реакции батареи топливных элементов. 2 н.п. ф-лы, 1 ил.

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ) и может быть использовано при производстве и эксплуатации указанных энергоустановок.

Значительное распространение в народном хозяйстве получили ЭХГ, в которых удаление воды и тепла из зоны реакции происходит за счет циркуляции электролита. Электролит нагревается в зоне реакции соединения водорода с кислородом и поглощает воду, после чего охлаждается в регенераторе электролита статического типа в результате испарения избыточной воды. Циркуляция электролита значительно облегчает поддержание баланса воды и тепла в зоне реакции соединения водорода с кислородом (Н.В.Коровин. «Электрохимические генераторы». Москва, «Энергия», 1974 г., стр.106-109, 118-121). Однако циркулирующий электролит выдвигает необходимость решения вопросов, связанных с шунтированием ТЭ по электролиту (токи утечки по электролиту, газовыделение и перенос массы и т.д.) (Н.С.Лидоренко, Г.Ф.Мучник. «Электрохимические генераторы». Москва, Энергоиздат, 1982 г., стр.220-222).

Регулирование температурно-влажностного режима в таких ЭХГ производится в теплообменниках, включенных во внутренний контур охлаждения. Конденсация избыточной влаги происходит на теплообменных поверхностях и за счет соответствующего охлаждения водорода. Сконденсированная влага с помощью специальных насосов откачивается либо в сборник конденсата, либо в систему регенерации воды.

В ЭХГ на основе водородно-кислородных ТЭ и в способе удаления воды и тепла из зоны реакции топливных элементов, взятых за прототип, отсутствует проблема закорачивания ТЭ по электролиту (С.А.Подшивалов, Э.И.Иванов и др. «Энергетические установки космических аппаратов». Москва, Энергоиздат, 1981 г., стр.40-42).

ЭХГ на основе водородно-кислородных топливных элементов, взятый за прототип, состоит из контура сброса тепла с датчиком температуры и последовательно соединенными насосом и радиатором, батареи топливных элементов с трубопроводами подачи водорода и кислорода, с шинами выхода электричества, с клапаном сброса воды и системы управления и контроля ЭХГ, а также контура прокачки водорода, включающего компрессор (вентилятор), выход которого соединен с трубопроводом входа водорода в батарею топливных элементов, а вход - с выходом водорода из центрифуги-сепаратора с верхним и нижним сигнализаторами уровня влаги.

ЭХГ работает следующим образом. В контуре прокачки водорода за счет непрерывной циркуляции водорода осуществляется отвод от ТЭ водяных паров и тепла. Далее поток пароводородной смеси поступает в водородный теплообменник-регенератор, который передает часть выделяющегося в ТЭ тепла газообразному водороду для поддержания требуемой температуры батареи ТЭ. После чего пароводородная смесь поступает в конденсатор, где тепло отдается теплоносителю, причем результирующее понижение температуры вызывает конденсацию водяных паров воды, а также охлаждение воды и водорода. Приводимая в действие электродвигателем центрифуга-сепаратор отделяет жидкую воду и отводит ее в бак для сбора воды. Охлажденный «сухой» водород затем снова перекачивается к батарее ТЭ с помощью вентилятора. Тепло, отданное в конденсаторе теплоносителю, выводится с его помощью к панелям холодильника-излучателя.

Таким образом, способ удаления воды и тепла из зоны реакции батареи топливных элементов (С.А.Подшивалов, Э.И.Иванов и др. «Энергетические установки космических аппаратов». Москва, Эпергоиздат, 1981 г., стр.40-42) заключается в следующем. Подают водород и кислород в батарею топливных элементов. Водород, выходящий из зоны реакции батареи топливных элементов, нагревается и насыщается парами воды за счет химического соединения водорода с кислородом в зоне реакции. Полученную пароводородную смесь охлаждают до температуры окружающей среды. Отделяют сконденсированную воду от водорода, который снова перекачивают в батарею топливных элементов.

Недостатком известного ЭХГ и способа, реализующего удаление воды и тепла из зоны реакции батареи топливных элементов, является сложность удаления воды и тепла, связанная с тем, что процесс охлаждения воды требует дополнительных затрат электроэнергии (так как водород вместе с паровородной смесью поступает в зону реакции охлажденным до температуры окружающей среды).

Известен способ регулирования влагосодержания в водородно-кислородном аккумуляторе (патент RU 2081478, 10.06.1997, МПК 6 Н01М 8/18, Н01М 8/04), включающий подачу водорода и кислорода в батарею топливных элементов, продувку водородом топливных элементов, выход пароводородной смеси из зоны реакции батареи топливных элементов, охлаждение полученной пароводородной смеси до температуры конденсации пара путем впрыскивания воды, охлажденной до температуры окружающей среды, с расходом, определяемым выражением:

где G - расход охлаждающей воды, кг/с; nТЭ - число ячеек топливных элементов; I - ток на клеммах электрохимического генератора, A; Δt - градиент температуры между топливными элементами и охлаждающей водой, К, с образованием пароводяной смеси с водородом, отделение сконденсированной воды от водорода, который снова перекачивают в батарею топливных элементов, удаление воды.

Данный способ принят за прототип.

Недостатком способа является дополнительный расход воды, так как происходит удаление воды, образовавшейся в результате химической реакции в батарее топливных элементов, и воды, необходимой для сброса тепла из зоны реакции.

Задачей изобретения является повышение эффективности процесса удаления воды и тепла из зоны реакции батареи топливных элементов (непрерывность процесса удаления тепла и воды, образовавшейся в результате химической реакции).

Технический результат заключается в том, что предлагаемое изобретение позволяет:

- снизить энергозатраты за счет подачи водорода в батарею топливных элементов, разогретых до температуры конденсации паров воды;

- увеличить надежность и ресурс ЭХГ, так как агрегаты постоянно работают в условиях без резких перепадов температуры, обеспечивая при этом непрерывное удаление конечных продуктов токообразующей реакции.

Технический результат достигается за счет того, что электрохимический генератор на основе водородно-кислородных топливных элементов содержит контур сброса тепла с датчиком температуры и насосом, выход которого соединен с входом радиатора-излучателя, батарею топливных элементов с трубопроводами подвода водорода и кислорода, с шинами выхода электричества, с клапаном сброса воды, систему управления и контроля электрохимического генератора, контур прокачки водорода, включающий вентилятор, выход которого соединен с трубопроводом подачи водорода в батарею топливных элементов, а вход - с выходом водорода из центрифуги-сепаратора сигнализаторами уровня влаги, в него введен смеситель по водороду и воде с штуцерами входа воды, входа водорода и выхода смеси водорода и воды из батареи топливных элементов, при этом на штуцере входа водорода в смеситель по водороду и воде установлен датчик температуры, а выход из центрифуги-сепаратора по воде подсоединен к входу насоса, выход из радиатора подсоединен к входу воды смесителя по воде и водороду, вход смеси водорода с водой соединен с входом в центрифугу-сепаратор, причем клапан сброса воды подключен к контуру съема тепла, а сигналы от датчиков температуры и сигнализаторов уровня влаги связаны с входом в систему управления и контроля электрохимического генератора, выходы из которой связаны с насосом и клапаном сброса воды.

Технический результат достигается также за счет того, что в способе удаления воды и тепла из зоны реакции батареи топливных элементов, включающем подачу водорода и кислорода к батарею топливных элементов, продувку водородом топливных элементов, выход пароводородной смеси из зоны реакции батареи топливных элементов, охлаждение полученной пароводородной смеси до температуры конденсации пара путем впрыскивания воды, охлажденной до температуры окружающей среды, с расходом, определяемым выражением: ,

где G - расход охлаждающей воды, кг/с; nТЭ - число ячеек топливных элементов; I - ток на клеммах электрохимического генератора, A; Δt - градиент температуры между топливными элементами и охлаждающей водой, К, с образованием пароводяной смеси с водородом, отделение сконденсированной воды от водорода, который снова перекачивают в батарею топливных элементов, удаление воды, при этом перед охлаждением пароводяной смеси с водородом отделяют сконденсированную воду из полученной смеси, при этом сконденсированную воду охлаждают до температуры окружающей среды, из сконденсированной воды удаляют воду, образовавшуюся в зоне реакции батареи топливных элементов, а оставшуюся часть воды смешивают с пароводородной смесью, выходящей из батареи топливных элементов.

Сущность изобретения заключается в том, что пароводородную смесь, образованную в зоне реакции батареи топливных элементов с температурой 98°С, охлаждают количеством воды, определяемым по формуле (1). При этом происходит конденсация пара и образование воды с температурой 90-95°С, а также охлаждение водорода до температуры 90-95°С. Эту образовавшуюся пароводяную смесь с водородом направляют в центрифугу-сепаратор, где горячая вода отделяется от водорода, затем водород поступает в батарею топливных элементов, а горячая вода, образовавшаяся как в результате химической реакции, так и необходимая для охлаждения (сброса) тепла, накапливается в центрифуге-сепараторе. Уровень воды в центрифуге меняется за счет количества образовавшейся воды в зоне реакции батареи топливных элементов. По мере изменения уровня воды, образовавшейся в результате химической реакции, ее удаляют из зоны реакции батареи топливных элементов и охлаждают до температуры окружающей среды.

Экспериментальным путем подтверждено, что постоянное влагосодержение и съем тепла при длительной работе в период резкой смены нагрузки происходит при расходе воды, определяемом по формуле (1).

Коэффициент регулирования расхода ((5,1-5,3)·10-5) обеспечивается автоматически, за счет того, что ЭХГ работает только в определенном диапазоне, выдаваемом заказчику, электрической мощности от Nmin до Nmax (например, Nmin=1 кВт, a Nmax=10 кВт). При Nmax выделяется больше тепла и паров воды, в связи с чем повышается температура на выходе из батареи ТЭ, измеряемая датчиком температуры 9, что увеличивает разность температур, измеряемых датчиками 9 и 10. По сигналу увеличения разности температур увеличивается производительность насоса 2, обеспечивая максимальный расход воды, что приводит к снижению температуры воды, выходящей из радиатора-излучателя 3 до заданного уровня, и, следовательно, к снижению температуры сконденсированной воды, поступающей в смеситель по водороду и воде 5, тоже до заданного значения. При Nmin количество тепла и паров воды уменьшается, в связи с чем понижается температура на выходе из батареи ТЭ, измеряемая датчиком температуры 9, что уменьшает разность температур, измеряемых датчиками 9 и 10. По сигналу уменьшения разности температур уменьшается производительность насоса 2, обеспечивая минимальный расход воды, что приводит к повышению температуры воды, выходящей из радиатора 3, до заданного уровня и, следовательно, к повышению температуры воды, поступающей в смеситель 5, тоже до заданного уровня. При оптимальной заранее заданной постоянной электрической мощности, выделяемой потребителю ЭХГ, и конкретной тоже постоянной температуре на выходе из радиатора-излучателя 3 расход охлаждающей воды определяется по формуле:

где G - расход охлаждающей воды, кг/с;

I - ток, который выдает потребителю батарея ТЭ (ток на клеммах ЭХГ), А;

nТЭ - количество ячеек ТЭ;

Δt - градиент температуры между топливными элементами и охлаждающей водой, К.

Так например, в ЭХГ, состоящем из 30-ти топливных ячеек, при постоянной разности температур Δt=t2-t1=70°С (t2 - температура в зоне реакции, равная 98°С, t1 - температура на выходе радиатора-излучателя, равная 28°С) и работающем при Nmin=1 кВт (I=150 А), расход охлаждающей воды, определяемый по формуле (1), равен 0,38·10-2 кг/с, а при Nmax=10 кВт (I=1000 А), когда выделяется большее количество тепла и паров воды, расход охлаждающей воды, определяемый по формуле (1), равен 2,36·10-2 кг/с. При оптимальной, заранее заданной постоянной электрической мощности, выдаваемой потребителю ЭХГ (например, N=5 кВт, I=500 А), и постоянной разнице температур расход охлаждающей воды, определяемый по формуле (2), равен 1,18·10-2 кг/с.

Сущность изобретения поясняется фиг.1, на которой изображена принципиальная пневмогидросхема электрохимического генератора на основе водородно-кислородных топливных элементов, где

1 - контур сброса тепла;

2 - насос с переменной производительностью;

3 - радиатор-излучатель;

4 - клапан сброса воды;

5 - смеситель по водороду и воде;

6 - батарея топливных элементов;

7 - вентилятор;

8 - центрифуга-сепаратор;

9, 10 - датчики температуры;

11, 12 - сигнализаторы влаги;

13 - шины батареи топливных элементов;

14 - система управления и контроля ЭХГ;

15 - трубопровод подачи кислорода;

16 - трубопровод подачи водорода.

Электрохимический генератор состоит из контура сброса тепла 1, включающего последовательно соединенные между собой насос с переменной производительностью 2 и радиатор-излучатель 3. К контуру сброса тепла подсоединен клапан сброса воды 4. Вход в насос 2 соединен с выходом по воде из центрифуги-сепаратора 8, выход насоса 2 соединен с входом радиатора-излучателя 3, а выход из радиатора-излучателя 3 подсоединен к входу смесителя по водороду и воде 5. Другой вход смесителя по водороду и воде 5 соединен с выходом водорода из батареи топливных элементов 6. Вход трубопровода водорода 16 в батарею топливных элементов 6 соединен с выходом вентилятора 7, вход которого соединен с выходом водорода из центрифуги-сепаратора 8. Центрифуга-сепаратор 8 снабжена двумя сигнализаторами влаги 11, 12, которые соединены с входом системы управления и контроля ЭХГ 14, а выходы из системы управления и контроля ЭХГ 14 связаны с насосом и клапаном сброса воды 4.

Трубопровод подачи кислорода 15 и трубопровод подачи водорода 16 подсоединены к батарее топливных элементов 6, а на входе в смеситель по водороду и воде 5 установлен датчик температуры 9. На выходе из радиатора 3 установлен датчик температуры 10. На шинах батареи топливных элементов 13 установлена система управления и контроля ЭХГ 14.

ЭХГ работает следующим образом. В батарею топливных элементов 6 по трубопроводу подачи кислорода 15 поступает кислород, а по трубопроводу подачи водорода 16 - водород. К трубопроводу подачи водорода 16 подсоединен вентилятор 7. В результате химической реакции соединения водорода с кислородом в батарее топливных элементов 6 в зоне реакции образуются пары воды и тепло. Зона реакции постоянно продувается водородом с помощью вентилятора 7, поэтому на выходе из батареи топливных элементов 6 датчик температуры 9 всегда будет показывать температуру, находящуюся в заданных пределах в зависимости от расхода водорода. Горячий и влажный водород поступает в смеситель по водороду и воде 5, где смешивается с холодной водой, поступающей из контура сброса тепла 1 и охлажденной в радиаторе-излучателе 3. Температура холодной воды, поступающей из радиатора-излучателя 3, измеряется датчиком температуры 10 и находится в заданных пределах благодаря тому, что расход воды регулируется насосом с переменной производительностью 2. Водород, охлажденный до температуры конденсации пара, то есть с каплями конденсата горячей воды, из смесителя по водороду и воде 5 поступает в центрифугу-сепаратор 8, где разделяется на воду и водород, который с помощью вентилятора 7 вновь поступает в батарею топливных элементов 6, а вода из центрифуги-сепаратора 8 насосом 2 подается в радиатор-излучатель 3. В центрифуге-сепараторе 8 установлены сигнализаторы влаги 11 и 12, по сигналу которых открывается (по сигнализатору влаги 11) или закрывается (по сигнализатору влаги 12) клапан сброса воды 4. Управление клапаном сброса 4 и производительностью насоса 2 по показаниям датчиков температуры 9 и 10 проводится системой управления и контроля ЭХГ 14, установленной на шинах батареи топливных элементов 13.


ЭЛЕКТРОХИМИЧЕСКИЙ ГЕНЕРАТОР НА ОСНОВЕ ВОДОРОДНО-КИСЛОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СПОСОБ УДАЛЕНИЯ ВОДЫ И ТЕПЛА ИЗ ЗОНЫ РЕАКЦИИ БАТАРЕИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
ЭЛЕКТРОХИМИЧЕСКИЙ ГЕНЕРАТОР НА ОСНОВЕ ВОДОРОДНО-КИСЛОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СПОСОБ УДАЛЕНИЯ ВОДЫ И ТЕПЛА ИЗ ЗОНЫ РЕАКЦИИ БАТАРЕИ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Показаны записи 361-370 из 370.
06.07.2019
№219.017.a845

Устройство удержания магистрали заправки и слива окислителя ракетного разгонного блока

Изобретение относится к ракетно-космической технике. Устройство удержания магистрали заправки и слива окислителя ракетного разгонного блока содержит опору, жестко закрепленную на нижнем переходнике с помощью болтового соединения и двух растягивающих тросов, регулируемых по длине с помощью...
Тип: Изобретение
Номер охранного документа: 0002355609
Дата охранного документа: 20.05.2009
06.07.2019
№219.017.a847

Устройство заправки и слива окислителя ракетного разгонного блока

Изобретение относится к ракетно-космической технике, а именно к вопросу заправки (слива) окислителем ракетного разгонного блока. Устройство заправки и слива окислителя ракетного разгонного блока состоит из клапана заправки и клапана слива, установленных на баке окислителя, трубопроводов...
Тип: Изобретение
Номер охранного документа: 0002355606
Дата охранного документа: 20.05.2009
10.07.2019
№219.017.ad32

Устройство измерения интенсивности лучистых потоков при тепловакуумных испытаниях космических аппаратов и способ его эксплуатации

Изобретение относится к измерительной технике. Устройство включает металлический токопроводящий термочувствительный элемент, размещенный на электроизолирующей подложке. Термочувствительный элемент на подложке установлен внутри корпуса, выполненного из материала с высокой теплопроводностью, и...
Тип: Изобретение
Номер охранного документа: 0002354960
Дата охранного документа: 10.05.2009
10.07.2019
№219.017.ad60

Устройство измерения интенсивности лучистых потоков при тепловакуумных испытаниях космических аппаратов

Изобретение относится к измерительной технике. Устройство выполнено из двух рядом расположенных сборок, в каждой из которых чувствительный элемент на электроизолирующей подложке установлен внутри корпуса соответствующей сборки; упомянутые корпуса выполнены в виде правильной прямой призмы и/или...
Тип: Изобретение
Номер охранного документа: 0002353923
Дата охранного документа: 27.04.2009
10.07.2019
№219.017.ad6f

Блок вентиляторов

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий космической техники. Техническим результатом, достигаемым с помощью заявленного изобретения, является обеспечение ремонтопригодности и расширение компоновочных возможностей блока...
Тип: Изобретение
Номер охранного документа: 0002355916
Дата охранного документа: 20.05.2009
10.07.2019
№219.017.ae69

Замковое устройство

Изобретение относится области машиностроения, в частности к устройствам, обеспечивающим замыкание и разделение двух элементов конструкции. Замковое устройство содержит захватываемый упор с коническим буртиком, жестко установленный на одной соединяемой детали, и захватывающий механизм, подвижно...
Тип: Изобретение
Номер охранного документа: 0002364758
Дата охранного документа: 20.08.2009
10.07.2019
№219.017.aec5

Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Предлагаемый способ включает разворот панелей СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей СБ и...
Тип: Изобретение
Номер охранного документа: 0002325312
Дата охранного документа: 27.05.2008
10.07.2019
№219.017.aecd

Устройство для дозаправки в полете рабочим телом гидравлической магистрали системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и способ его эксплуатации

Изобретения относятся к области терморегулирования космических аппаратов. Предлагаемое устройство содержит емкость для рабочего тела с жидкостной и газовой полостями, герметично отделенными друг от друга подвижным разделителем сред. Жидкостная полость заполнена рабочим телом гидравлической...
Тип: Изобретение
Номер охранного документа: 0002324629
Дата охранного документа: 20.05.2008
10.07.2019
№219.017.aedf

Устройство для выбора объекта наблюдения с орбитального космического аппарата

Устройство относится к космической технике. Устройство включает глобус с нанесенной на него картой, два охватывающих глобус кольца, центры которых совмещены с центром глобуса, элемент в виде витка спирали, соответствующий осредненному витку орбиты движущегося по околокруговой орбите КА, начиная...
Тип: Изобретение
Номер охранного документа: 0002327112
Дата охранного документа: 20.06.2008
13.07.2019
№219.017.b3f9

Двухступенчатый двигатель с анодным слоем (варианты)

Изобретение относится к области электроракетных двигателей (ЭРД). Двухступенчатый двигатель с анодным слоем содержит катод - нейтрализатор, электромагнит, магнитопровод с полюсами, катод ускорительной ступени, который выполнен из графита, жестко связанные с магнитопроводом и расположенные...
Тип: Изобретение
Номер охранного документа: 0002406873
Дата охранного документа: 20.12.2010
Показаны записи 291-295 из 295.
10.07.2018
№218.016.6f2d

Электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Электрохимический компрессор водорода включает прочный корпус с входным и выходным штуцерами. Пакет электроизолированных мембранно-электродных блоков состоит...
Тип: Изобретение
Номер охранного документа: 0002660695
Дата охранного документа: 09.07.2018
05.12.2018
№218.016.a333

Способ создания реактивной тяги пилотируемого космического аппарата

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий...
Тип: Изобретение
Номер охранного документа: 0002673920
Дата охранного документа: 03.12.2018
20.03.2019
№219.016.e33e

Способ эксплуатации пилотируемой орбитальной станции

Изобретение относится к управлению полётом и жизнеобеспечению экипажей космических аппаратов (КА), преимущественно орбитальных станций. Способ включает выделение углекислого газа из воздуха обитаемых отсеков КА путем адсорбции, а также последующую десорбцию, охлаждение (с частичным сжижением) и...
Тип: Изобретение
Номер охранного документа: 0002673215
Дата охранного документа: 22.11.2018
29.04.2019
№219.017.436a

Энергоустановка с электрохимическим генератором на основе водородно-кислородных топливных элементов и способ ее эксплуатации

Изобретение относится к энергоустановкам с электрохимическими генераторами (ЭХГ) на основе водородно-кислородных топливных элементов (ТЭ). Техническим результатом является повышение надежности включения и работоспособности ЭХГ при низких температурах окружающей среды. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002417487
Дата охранного документа: 27.04.2011
10.07.2019
№219.017.adb0

Автономная система энергопитания и способ ее эксплуатации

Изобретение относится к области автономных систем энергопитания (АСЭП) отдельных объектов, удаленных от линии электропередачи, а именно к АСЭП, включающим возобновляемые источники энергии в качестве внешнего источника электроэнергии, электрохимический генератор (ЭХГ), электролизер и баллоны для...
Тип: Изобретение
Номер охранного документа: 0002371813
Дата охранного документа: 27.10.2009
+ добавить свой РИД