×
20.05.2013
216.012.41f9

Результат интеллектуальной деятельности: ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СПОСОБ ИСПЫТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ), СПОСОБ ПРОИЗВОДСТВА ПАРТИИ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ (ВАРИАНТЫ), СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа газотурбинных, способам их испытания, опытного и промышленного производства и эксплуатации. В группе изобретений изложены способы испытаний ГТД. Испытания проводят с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Для чего предварительно создают и корректируют по результатам испытаний достаточного количества двигателей математическую модель двигателя, по которой определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам. Приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Разработанные варианты испытаний применимы при доводке, опытном и промышленном, серийном производстве и на стадии эксплуатации авиационных двигателей, в том числе после капитального ремонта, и обеспечивают более корректное приведение экспериментально полученных параметров двигателя с учетом принятых программ управления двигателем к параметрам, соответствующим стандартным атмосферным условиям, и повышение репрезентативности результатов испытаний для полного диапазона полетных циклов эксплуатации двигателя. При этом достигается повышение надежности результатов определения важнейших параметров работы двигателя в широком диапазоне температурных климатических условий при снижении трудоемкости и энергозатрат и сбережение ресурса двигателей при испытаниях. 6 н. и 4 з.п. ф-лы, 4 табл.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа газотурбинных, способам их испытания, опытного и промышленного производства и эксплуатации.

Известен газотурбинный двигатель, выполненный двухконтурным, содержит корпус с размещенным в нем турбокомпрессорным блоком, включающим компрессоры и турбины высокого и низкого давления, по меньшей мере, одну основную камеру сгорания, реактивное сопло, системы подачи воздуха и воздушного охлаждения, гидравлические топливную и масляную системы, а также системы мониторинга и управления работой двигателя (Клячкин А.Л. Теория воздушно-реактивных двигателей. - М.: Машиностроение, 1969, стр.296-396).

Известен способ испытаний газотурбинного двигателя с учетом сезонных факторов проведения испытаний, включающий установленную в техническом задании наработку максимальной тяги на стационарном режиме и переменные режимы с выходом на указанный режим максимальной тяги при существующей в период испытаний температуре атмосферного воздуха. В конечной стадии испытаний двигатель выводят на режим максимальной тяги, повышают температуру воздуха на входе в двигатель до величины, превышающей наружную температуру на 50-180°C, и дают дополнительную наработку и дополнительные выходы на режим максимальной тяги (RU 2210066 C1, опубл. 10.08.2003).

Известен способ разработки и испытаний авиационных газотурбинных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, 288 с., стр.136-137).

Известен способ разработки и испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004). Известен способ промышленного производства авиационных двигателей типа газотурбинных, включающий изготовление и заводскую сборку силовых, контролирующих, командных и исполнительных агрегатов, блоков и систем двигателя, включая компрессоры, турбины, камеры сгорания, воздушную, топливную и масляную системы и систему управления двигателем (Богуслаев В.А., Качан А.Я., Долматов А.И., Мозговой В.Ф., Кореневский Е.Я. Технология производства авиационных двигателей. Запорожье: Мотор Сич, 2009 [учеб.]; 4.4 Сборка авиационных двигателей. Раздел 3, с.26-61.

Известен способ эксплуатации авиационных двигателей типа ГТД, включающий операции подготовки к работе, периодическое включение, работу двигателя, периодическое обслуживание, текущие и капитальный ремонты (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, с.136-137).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая надежность оценки тяги двигателя в широком диапазоне режимов и региональных температурно-климатических условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний, выполняемых в различных температурных и климатических условиях, к результатам, отнесенным к стандартным условиям атмосферы, известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя в зависимости от принятых программ, адекватных полетным циклам, характерным для конкретного назначения разрабатываемого, серийно производимого авиационного газотурбинного двигателя, что осложняет возможность приведения экспериментальных параметров испытаний к параметрам, соответствующим условиям стандартной атмосферы на каждой из стадий доводки, опытного, промышленного, серийного производства и эксплуатации авиационных газотурбинных двигателей.

Задача изобретения заключается в повышении надежности определения получаемых при испытаниях данных о статистических границах и возможных изменениях величины тяги авиационных газотурбинных двигателей на всех этапах от доводки до серийного промышленного производства и эксплуатации по различным программам и в различных температурно-климатических условиях, а также в обеспечении возможности корректного приведения полученных результатов к стандартным условиям атмосферы и через них к любым другим реальным температурным и климатическим условиям с учетом принятых программ управления двигателем и в повышении репрезентативности результатов испытаний для полного диапазона перечисленных ситуаций применительно к полетным циклам двигателя в учебных и боевых условиях в различных регионах и сезонных периодах эксплуатации.

Поставленная задача в части способа испытания газотурбинного двигателя по первому варианту решается тем, что согласно изобретению испытания газотурбинного двигателя проводят на различных режимах, параметры которых соответствуют параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель газотурбинного двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных газотурбинных двигателей, а затем по математической модели определяют параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.

Поставленная задача в части способа испытания газотурбинного двигателя по второму варианту решается тем, что согласно изобретению испытания газотурбинного двигателя проводят с измерением параметров его работы на различных режимах, параметры которых соответствуют по величине и предельным значениям параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти двигателей, а затем по математической модели определяют параметры двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, а приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, и с учетом полученных данных выполняют последующий цикл испытаний с нагруженном двигателя, в процессе которого оценивают изменение параметров.

При этом, по меньшей мере, часть испытательных циклов могут осуществлять без прогрева на режиме «малый газ» после запуска.

Поставленная задача в части способа производства партии газотурбинных двигателей, в котором выполняют опытную партию ГТД, при этом монтируют корпус и силовые агрегаты двигателя, включая компрессорный блок, турбины, реактивное сопло, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и подвергают испытанию смонтированные опытные ГТД, решается тем, что согласно изобретению испытания производят любым из описанных выше способов испытания на определение фактических характеристик ресурса и надежности двигателя, по завершении программы испытаний анализируют полученные результаты, устраняют выявленные недостатки, при необходимости вносят изменения в конструкцию или в отдельные узлы ГТД и считают опытный образец выполненным и соответствующим заданной программе.

Поставленная задача в части газотурбинного двигателя решается тем, что двигатель согласно изобретению выполнен многовальным, содержит корпус с размещенными в нем компрессорным блоком, по меньшей мере, основной камерой сгорания, турбинами высокого и низкого давления, реактивным соплом, кроме того, двигатель включает воздушную систему, а также гидравлические - топливную и масляную системы, а также системы текущего мониторинга работы всех агрегатов двигателя, систему управления, включающую блоки сбора, оперативной обработки текущей рабочей информации с выдачей команд, органы управления и подчиненные им исполнительные блоки и агрегаты перечисленных систем, при этом двигатель испытан любым из описанных выше способом испытания на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

При этом газотурбинный двигатель может быть выполнен двухвальным и снабжен форсажной камерой сгорания.

Газотурбинный двигатель может быть выполнен трехвальным, содержать компрессоры и турбины низкого, среднего и высокого давлений и реактивное сопло с изменяемым вектором тяги.

Гидравлическая масляная система двигателя может быть оснащена двумя насосными группами, разводками маслопровода и форсунками, подающими смазочную жидкость к трущимся элементам узлов, в том числе с возможностью обеспечения бесперебойного снабжения узлов смазочной жидкостью, в том числе в режимах перевернутого полета летательного аппарата и соответствующего положения двигателя.

Поставленная задача в части способа производства партии газотурбинных двигателей, в котором осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей, при этом в каждом двигателе монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы и производят стендовые испытания серийных газотурбинных двигателей из партии идентично произведенных ГТД, решается тем, что согласно изобретению испытанию подвергают, по меньшей мере, один двигатель из промышленной партии ГТД и производят испытания любым из описанных выше способов испытания на определение основных параметров работы серийно промышленно произведенного двигателя и проверку соответствия заданным значениям фактических параметров работы двигателя с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных газотурбинных двигателей с возможностью внесения указанных сведений в техническую документацию двигателя. Поставленная задача в части способа эксплуатации газотурбинного двигателя, в котором перед каждым запуском выполняют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы, периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт, решается тем, что согласно изобретению после капитального ремонта двигатель подвергают стендовым испытаниям любым из описанных выше способов испытания на соответствие требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы, при необходимости производят послеремонтную доводку и/или выполняют повторные испытания, и пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели газотурбинного двигателя и приемов приведения параметров любым описанным выше способом.

Технический результат, обеспечиваемый разработанной совокупностью объектов и признаков группы изобретений, состоит в обеспечении повышенной надежности испытательно-вычислительного определения тяги и других важнейших эксплуатационных характеристик авиационных газотурбинных двигателей за счет менее энерго- и трудоемкого получения и более корректного приведения экспериментально полученных параметров двигателя к параметрам, соответствующим стандартным атмосферным условиям, и в повышении репрезентативности результатов испытаний для полного диапазона полетных циклов в климатических условиях различных регионов с учетом посезонного варьирования эксплуатации двигателя. Это достигают тем, что перед проведением испытаний создают математическую модель двигателя. Проводят испытания репрезентативного количества обычно трех-пяти двигателей по разработанной программе и спектру режимов испытаний. По результатам испытаний корректируют математическую модель, посредством которой на базе последующих испытаний при конкретных температурах определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам, причем приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Это позволяет упростить последующие испытания, повысить корректность и расширить репрезентативность оценки важнейших характеристик, в первую очередь, тяги на всех этапах создания, доводки, серийного промышленного производства и летной эксплуатации газотурбинных двигателей с корректным распространением репрезентативных оценок на широкий диапазон региональных и сезонных условий последующей летной эксплуатации двигателей, выполняемой в соответствии с изобретением.

Испытания газотурбинного двигателя проводят на различных режимах с параметрами, соответствующими параметрам полетных режимов по программе для конкретной серии двигателей. В процессе испытаний производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям. Приведение производят с учетом изменения свойств рабочего тела и геометрических характеристик проточной части газотурбинного двигателя при изменении атмосферных условий. Для этого предварительно создают математическую модель газотурбинного двигателя по типу, например, см. Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, стр.90-91, 106-107. Корректируют ее по результатам стендовых испытаний репрезентативного количества от трех до пяти идентичных газотурбинных двигателей. Затем по математической модели определяют параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха в пределах, предусмотренных программой для испытания двигателя на максимальных и форсированных режимах. Фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях. Вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.

В другом варианте испытания газотурбинного двигателя проводят с последовательной совокупностью действий предыдущего варианта. Затем с учетом полученных данных дополнительно выполняют последующий цикл испытаний с наибольшим нагружением двигателя, включающий быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя. Быстрый выход на максимальный или форсированный режимы, по меньшей мере, на части общего испытательного цикла осуществляют в темпе приемистости и сброса применительно к полетным циклам для боевого и учебного применения газотурбинного двигателя.

При необходимости повышения объемной достоверности спектра режимов испытаний, по меньшей мере, до 20% циклов испытания газотурбинного двигателя могут выполнять без прогрева на режиме малый газ после запуска.

В способе производства партии газотурбинных двигателей выполняют опытную партию ГТД. Производят, по меньшей мере, сборку каждого опытного двигателя. Монтируют корпус и силовые агрегаты двигателя, включая компрессорный блок, турбины, реактивное сопло, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы. Подвергают испытанию смонтированные опытные ГТД. Испытания производят любым описанным выше способом испытания на определение фактических характеристик ресурса и надежности двигателя. По завершении программы испытаний анализируют полученные результаты. Устраняют выявленные недостатки. При необходимости вносят изменения в конструкцию или в отдельные узлы ГТД и считают опытный образец выполненным и соответствующим заданной программе.

Газотурбинный двигатель выполнен многовальным, содержит корпус с размещенными в нем компрессорным блоком, по меньшей мере, основной камерой сгорания, турбинами высокого и низкого давления, реактивным соплом. Двигатель включает воздушную систему, а также гидравлические - топливную и масляную системы, а также системы текущего мониторинга работы всех агрегатов двигателя, систему управления, включающую блоки сбора, оперативной обработки текущей рабочей информации с выдачей команд, органы управления и подчиненные им исполнительные блоки и агрегаты перечисленных систем. Двигатель испытан любым описанным выше способом испытания ГТД на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

При этом, по меньшей мере, двухвальный газотурбинный двигатель вариантно снабжен форсажной камерой сгорания и реактивным соплом с изменяемым критическим сечением и вектором тяги.

Газотурбинный двигатель, выполненный трехвальным, содержит компрессоры и турбины низкого, среднего и высокого давлений и, по меньшей мере, одно реактивное сопло с изменяемым вектором тяги.

Для обеспечения устойчивой работы в перевернутом положении, характерном для длительного полета летательного аппарата (ЛА) при выполнении фигур высшего пилотажа или в боевых условиях, газотурбинный двигатель может быть оснащен модифицированной гидравлической масляной системой. Такая система снабжена двумя насосными группами, разводками масляных магистралей и системами форсунок, подающих смазочную жидкость к трущимся элементам узлов. Этим обеспечивают возможность бесперебойного снабжения узлов смазочной жидкостью в указанных экстремальных режимах работы двигателя.

В способе производства партии газотурбинных двигателей осуществляют, по меньшей мере, серийную промышленную заводскую сборку двигателей. В каждом двигателе монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, воздушную, а также гидравлические топливную и масляную системы, мониторинговые, командные и исполнительные элементы, блоки и системы. Производят стендовые испытания серийных газотурбинных двигателей из партии идентично произведенных ГТД. Испытанию подвергают группу двигателей из промышленной партии ГТД и производят испытания любым описанным выше способом испытания на определение основных параметров работы серийно промышленно произведенного двигателя и проверку соответствия заданным значениям фактических параметров работы двигателя. Затем переводят результаты испытаний, полученные в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных газотурбинных двигателей. Вносят сведения в техническую документацию двигателя.

В способе эксплуатации газотурбинного двигателя перед каждым запуском выполняют проверку готовности двигателя к работе. Производят запуск, прогрев и вывод двигателя на предусмотренные регламентом рабочие режимы. Периодически производят профилактические осмотры, текущие ремонты, а также, по меньшей мере, один капитальный ремонт. После капитального ремонта двигатель подвергают стендовым испытаниям любым описанным выше способом испытания на соответствие требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы. При необходимости производят послеремонтную доводку и/или выполняют повторные испытания. Производят пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели газотурбинного двигателя и приемов приведения параметров любым описанным выше способом.

Испытания авиационных газотурбинных двигателей производят на этапах доводки, опытного и промышленного производства и эксплуатации следующим образом.

Пример реализации способа испытания газотурбинного двигателя (ГТД).

Испытаниям подвергают репрезентативную группу из трех-пяти ГТД. При этом используют предварительно разработанную математическую модель двигателя. Испытания указанной группы ГТД проводят при температуре tВХ=0°C,

Ва=745 мм рт.ст.

По результатам замеров и их статистического обобщения получают значения параметров: усилия тяги двигателя R=985 кгс и частоту вращения n=98,8%.

Для последующей оценки результатов испытаний используют математическую модель двигателя, по которой проводят расчет параметров на различных режимах работы двигателя в диапазоне температур воздуха на входе в двигатель, в том числе и при tВХ=+15°C. Результаты расчета представлены в Табл.1.

Табл.1
tВХ, °C
Температура на входе в двигатель -15 0 +15 +30
R, кгс 1000 980 970 950
Усилие тяги
n, %
частота вращения 98 99 100 100

Сопоставляют полученные выше данные и вычисляют поправочные коэффициенты путем отношения значения параметра при tВХ=+15°C к значениям параметра в заданном диапазоне температур на входе в двигатель (Табл.2).

Табл.2
tВХ, °C -15 ±0 +15 +30
KR 0,97 0,99 1 1,021
Kn 1,02 1,01 1 1

Затем определяют параметры при стандартных атмосферных условиях (МСА)

,

nMCA=n×Kn=98,8×1,01=99,79%

и вносят полученные данные в сопроводительную документацию соответствующей группы ГТД.

Используют полученные выше параметры ГТД для вычисления соответствующих параметров применительно к температурно-климатическим условиям конкретных районов эксплуатации двигателей в диапазоне рабочих температур наружного воздуха tВХ=±50°C. Экстремальные для указанного диапазона температур значения параметров ГТД, полученные на основе результатов испытаний с использованием математической модели и данных при стандартных атмосферных условиях (МСА), представлены в Табл.3 и Табл.4.

Табл.3
tВХ, °C
Температура на входе в двигатель -50 -15 0 +15 +20 +50
R, кгс 1200 1000 980 970 950 900
Усилие от тяги
n, % 96 98 99 100 100 100
частота вращения

Табл.4
tВХ, °C -50 -15 0 +15 +20 +50
KR 0,81 0,97 0,99 1 1,021 1,078
Kn 1,042 1,02 1,01 1 1 1

Из Табл.3 и табл.4 видно, что тяга в экстремальном диапазоне температур от (-50)°C до (+50)°C изменяется на одну треть при изменении оборотов на 4%.

Таким образом, изобретение позволяет повысить достоверность результатов испытаний газотурбинных двигателей с учетом принятых программ управления.

Изложенную выше последовательность испытания ГТД применяют на всех этапах от доводки до промышленного производства, эксплуатации и капитального ремонта авиационных газотурбинных двигателей.

Источник поступления информации: Роспатент

Показаны записи 121-130 из 377.
20.05.2015
№216.013.4c31

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания...
Тип: Изобретение
Номер охранного документа: 0002551019
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4cac

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние...
Тип: Изобретение
Номер охранного документа: 0002551142
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d13

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически...
Тип: Изобретение
Номер охранного документа: 0002551245
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d14

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551246
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d15

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по...
Тип: Изобретение
Номер охранного документа: 0002551247
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d16

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551248
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d17

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551249
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4f1f

Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к области авиации, в частности к системам регулирования двигателя. Способ регулирования авиационного турбореактивного двигателя заключается в регулировании углов установки направляющих аппаратов компрессора. Для этого предварительно формируют две или более программы...
Тип: Изобретение
Номер охранного документа: 0002551773
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa6

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным и содержит реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом...
Тип: Изобретение
Номер охранного документа: 0002551911
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.4faa

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002551915
Дата охранного документа: 10.06.2015
Показаны записи 121-130 из 416.
20.05.2015
№216.013.4c31

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. На стадии доводки опытный ТРД подвергают испытанию по многоцикловой программе. При выполнении этапов испытания...
Тип: Изобретение
Номер охранного документа: 0002551019
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4cac

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. После сборки производят испытания двигателя на влияние...
Тип: Изобретение
Номер охранного документа: 0002551142
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d13

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации ТРД перед каждым запуском двигателя осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически...
Тип: Изобретение
Номер охранного документа: 0002551245
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d14

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Доводку ГТД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до...
Тип: Изобретение
Номер охранного документа: 0002551246
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d15

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по...
Тип: Изобретение
Номер охранного документа: 0002551247
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d16

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551248
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d17

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002551249
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4f1f

Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к области авиации, в частности к системам регулирования двигателя. Способ регулирования авиационного турбореактивного двигателя заключается в регулировании углов установки направляющих аппаратов компрессора. Для этого предварительно формируют две или более программы...
Тип: Изобретение
Номер охранного документа: 0002551773
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.4fa6

Турбореактивный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным и содержит реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом...
Тип: Изобретение
Номер охранного документа: 0002551911
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.4faa

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. В способе серийного производства ГТД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002551915
Дата охранного документа: 10.06.2015
+ добавить свой РИД