×
20.05.2013
216.012.41e4

СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002482438
Дата охранного документа
20.05.2013
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретения относятся к полигонным испытаниям боеприпасов. При проведении испытаний применяют два неконтактных датчика, определяют координаты движения осколков снаряда на основе информации о пространственном положении сработавших чувствительных элементов линеек фотоприемников, определяют скорость движения осколков, определяют геометрические размеры осколков снаряда, определяют массу осколков, фиксируют изменения координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты векторов движения осколков снаряда. Повышается оперативность обработки экспериментальных данных. 2 н. и 1 з.п. ф-лы, 7 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Для расчета эффективности действия осколочных боеприпасов по различным целям необходимо знать распределение чисел осколков и их начальных скоростей по угловым секторам разлета, а внутри угловых секторов - распределение осколков по массе.

Известен способ испытания осколочного боеприпаса с круговым полем разлета осколков, заключающийся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).

Известен стенд испытания осколочного боеприпаса с круговым полем разлета осколков, состоящий из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).

Недостатком данного способа и устройства является низкая оперативность.

Технической задачей изобретения является повышение оперативности.

Достижения технической задачи достигаются тем, что в способе испытания осколочного боеприпаса, заключающимся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам, дополнительно вводят два неконтактных датчика, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, определяют скорости движения осколков в каждом угловом секторе, за счет фиксации моментов времени и количеств последовательных срабатываний элементов фотоприемников первого и второго датчиков в процессе движения осколков снаряда к мишени, определяют количество эшелонов осколков на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков относительно первого и второго датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ, осуществляют оперативное определение координат движения осколков на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, осуществляют оперативное определение скорости движения осколков в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi,Yi,Zi векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , , осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.

Реализация предлагаемого способа осуществляется на основе стенда испытания осколочного боеприпаса с круговым полем разлета осколков, состоящим из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями, в который дополнительно введены первый и второй неконтактные датчики, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, N-1 блоков измерений, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом первый и второй датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, блок измерений содержит первый и второй блок логики, первый, второй, третий, четвертый, пятый и шестой элементы ИЛИ, первый, второй и третий устройства измерений, выходы каждого из N-1 секторов первого и второго датчика соединены соответственно с первыми, вторыми, третьими, четвертыми, пятыми и шестыми входами блоков измерений, седьмой вход которого соединен с выходом кнопки «Пуск», первая, вторая, третья группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов первого блока логики и входами первого, второго и третьего элементов ИЛИ, четвертая, пятая, шестая, группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов второго блока логики и входами четвертого, пятого и шестого элементов ИЛИ, седьмой вход блока измерений является четвертым входом первого и второго блоков логики, выходы первого, второго и третьего элементов ИЛИ соединены с первыми входами первого, второго и третьего измерительных устройств, вторые входы которых соединены соответственно с выходами четвертого, пятого и шестого элементов ИЛИ, выходы первого, второго и третьего измерительных устройств, первого и второго блоков логики являются соответственно первым, вторым, третьим, n-четвертыми и n-пятыми выходами блока измерений, выходы которого соединены с входами аналого-цифрового преобразователя, выход которого соединен с входом блока памяти, выход которого через передающее устройство, приемное устройство, согласующее устройство соединен с входом микроЭВМ.

Кроме того, блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, первого и второго элементов ИЛИ, дифференцирующей цепи, причем первые, вторые и третьи входы блока логики являются соответственно первыми, вторыми и третьими входами квадратной матрицы n-порядка элементов И, выходы которых соединены соответственно с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой соединен с выходом второго элемента ИЛИ, второй вход которого является выходом первого элемента ИЛИ, входы которого соединены с выходами триггеров, четвертый вход блока логики является первым входом второго элемента ИЛИ, выходы триггеров являются выходами блока логики.

Изобретение поясняется чертежами.

На фиг.1 приведена схема стенда испытания осколочного боеприпаса, на фиг.2 - структурная схема измерения характеристик осколочного боеприпаса в одном из секторов первого и второго датчика, на фиг.3 - структурная схема одного из блоков измерений, на фиг.4 - структурная схема блока логики, на фиг.5 - гистограмма и кривая распределения осколков по направлениям разлета, на фиг.6 приведена таблица распределения осколков по скоростям, на фиг.7 приведена таблица распределения осколков по массе.

Стенд испытаний осколочного боеприпаса содержит пульт 1 управления подрывом, стойку (штатив) 2 для установки подрываемого боеприпаса 3 с электродетонатором 4, первый 5 и второй 6 датчики, полуцилиндрическую стенку 7, n-блоков 8 измерений, аналого-цифровой преобразователь 9, блок 10 памяти, передающее устройство 11, приемное устройство 12, согласующее устройство 13, микроЭВМ 14.

Первый 5 и второй 6 датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов 15 и линеек фотоприемников 16, источника 17 питания.

Блок 8 измерений содержит первый 18 и второй 19 блок логики, первый 20, второй 21, третий 22, четвертый 23, пятый 24, шестой 25 элементы ИЛИ, первый 26, второй 27 и третий 28 измерительные устройства. Блоки (18, 19) логики состоят из матрицы элементов И 29, из матрицы триггеров 30, первого 31 и второго 32 элементов ИЛИ, дифференцирующей цепи 33.

Описание работы устройства

Осуществляют подрыв боевой части (БЧ) в специальной мишенной обстановке, представляющей собой полуцилиндр, улавливающий часть осколков, летящих в направлении, определяемом двугранным углом Δθ. Щиты полуцилиндра устанавливаются на одинаковом расстоянии R от центра БЧ (фиг.1). Угол φ разбивается на угловые секторы шириной Δφjjj-1 (j=1, 2, …, n), границы которых на щитах обозначены вертикальными линиями. Линии пересечения полуцилиндра плоскостями двугранного угла вместе с вертикальными линиями образуют площадки, улавливающие осколки, летящие в направлениях, ограниченных углами Δθ и Δφj. При взрыве БЧ в щитах образуются пробоины, число Δnj которых подсчитывается в каждой площадке. Число Δnj увеличивается в раз и тем самым определяется количество осколков ΔNj, летящих в угловом секторе Δφj, примыкающем к углу φj.

В момент выдачи команды «Пуск» на детонатор 4 боеприпаса, происходит подрыв осколочного боеприпаса и, кроме того, сигнал поступает на пятые входы блоков 8 измерений, для обнуления триггеров (30) блоков логики (18, 19).

При пролете осколочного поля боеприпаса относительно первого 5 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на первые, вторые и третьи входы одного из блоков 8 измерений.

При пролете осколочного поля боеприпаса относительно второго 6 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на четвертые, пятые и шестые входы одного из блоков 8 измерений.

Блоки 8 измерений определяют скорость движения осколков и координаты его движения на основе информации о временном интервале между моментами срабатывания датчиков (5, 6) и комбинации сработавших чувствительных элементов фотоприемников (16) (фиг.3).

Это происходит следующим образом.

В момент пролета осколков относительно первого 5 датчика происходит срабатывание определенной комбинации чувствительных элементов (16) линеек фотоприемника в соответствии с координатами пролета осколков в пространстве.

Сигналы с выходов датчика 5 поступают на первые, вторые и третьи входы первого 18 блока логики, входы первого 20, второго 21 и третьего 22 элементов ИЛИ, с выходов которых поступают на первые входы первого 18, второго 19 и третьего измерительных устройств (фиг.3).

В момент пролета осколков относительно второго 6 датчика происходит срабатывание определенной комбинации чувствительных элементов 16 датчика, соответствующих координатам пролета осколков в пространстве. Сигналы с выходов второго 6 датчика на первые, вторые и третьи входы второго 19 блока логики, входы четвертого 23, пятого 24 и шестого 25 элементов ИЛИ, с выходов которых поступают на вторые входы первого 26, второго 27 и третьего 28 измерительных устройств (фиг.3).

Коды сигналов, поступающих на первые, вторые и третьи входы блока логики (18, 19), соответствуют координатам движения осколков и обеспечивают срабатывание определенной комбинации матрицы элементов И 29, сигналы с выхода которых обеспечивают срабатывание комбинации матрицы триггеров 30, сигналы с выхода которых поступают на входы первого 31 элемента ИЛИ, с выхода которого поступают на второй вход второго 32 элемента ИЛИ, с выхода которого поступают на вход дифференцирующей цепи 33, с выхода которой поступают на входы обнуления матрицы триггеров 31 (фиг.4).

Дифференцирующая цепь 33 обеспечивает обнуления триггеров в момент подачи команды «Пуск» и в момент прохода эшелона осколков.

Сигналы с выходов блока логики 18 (19) соответствуют координатам пролета осколков и являются одновременно n-четвертыми и n-пятыми выходами блока 8 измерений. Сигналы с первого, второго, третьего, n-четвертых и n-пятых выходов блока 8 измерений поступают на входы аналого-цифрового преобразователя 9 (фиг.1).

Сигналы с выхода аналого-цифрового преобразователя 9 поступают на вход блока 10 памяти, с выхода которого через передающее устройство 11, приемное устройство 12, согласующее устройство 13 поступают на вход микроЭВМ 14.

Координаты движения осколков снаряда определяются на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников.

Скорость движения осколков снаряда определяется в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков снаряда относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях.

Геометрические размеры осколков снаряда определяются в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях.

Масса осколков определяется в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса снаряда. Определяют углы подхода осколков к мишени путем фиксации изменений координат движения осколков относительно первого и второго датчиков и в виде выражений ,

где Xi, Yi - координаты векторов движения осколков снаряда, равные отношениям Xi=x1i-x2i, Yi=y1i-y2i.

МикроЭВМ на основе алгоритмов определяет дифференциальный закон распределения осколков по направлениям разлета, распределения осколков по скорости, геометрическим размерам и массе.

Алгоритм определения гистограммы и дифференциального закона распределения осколков по направлениям разлета заключается в том, что в направлении разлета осколков выбираются угловые сектора шириной Δφjjj-1 (j=1, 2, …, n), определяется количество осколков Δnj в каждом угловом секторе неконтактных датчиков в момент взрыва боевой части, определяется общее число осколков в секторах, находится относительное число осколков и рассчитывается соответствующая высота столбца гистограммы в соответствии с выражением:

, j=1, 2, …, n.

Примерный вид гистограммы, а также сглаживающая кривая приведены на фиг.5.

Начальная скорость разлета осколков V0 является важнейшей характеристикой, позволяющей определить абсолютную начальную скорость движения осколков V01 в условиях реального взрыва и тем самым решать целый ряд задач по определению поражающего действия боевых частей или оценки безопасности их применения. Экспериментально скорость V0 находится путем подрыва авиационного боеприпаса и регистрации времени пролета осколков Δτ некоторой базы ΔL. Время измеряется различными хронометрами (в данном случае неконтактными датчиками). Средняя скорость движения осколка затем приводится к начальной скорости осколка V0 с помощью уравнения движения его центра массы.

Затем начальные скорости заносятся в таблицу по угловым секторам Δφ (фиг.6).

Закон распределения осколков по массе определяется экспериментально с помощью стенда углового улавливания. Результаты эксперимента позволяют построить двумерную матрицу Nij, где Nij - число осколков i-й массовой группы в j-й угловой зоне. Ширина угловой зоны Δφ обычно принимается в пределах 2…5° (фиг.7).

Таким образом, предлагаемый способ испытаний осколочных боеприпасов и стенд для его реализации позволяют обеспечить оперативную обработку экспериментальных данных.


СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИСПЫТАНИЙ ОСКОЛОЧНЫХ БОЕПРИПАСОВ И СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 80.
20.11.2015
№216.013.8f2e

Способ определения характеристик рассеивания снарядов при стрельбе из артиллерийского оружия и информационно-вычислительная система для его осуществления

Изобретение относится к области полигонных испытаний, в частности для определения характеристик рассеивания снарядов. Технический результат заключается в достоверности получаемых данных. В способе и в устройстве фиксируют временные интервалы, определяя координаты пролета снарядов с помощью...
Тип: Изобретение
Номер охранного документа: 0002568270
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f2f

Способ определения характеристик рассеивания снарядов при стрельбе из артиллерийского оружия и информационно-вычислительная система для его осуществления

Изобретение относится к области полигонных испытаний, в частности для определений характеристик рассеиваний снарядов при стрельбе из артиллерийского оружия. Технический результат заключается в повышении достоверности получаемых данных. В способе и устройстве фиксируют временные интервалы,...
Тип: Изобретение
Номер охранного документа: 0002568271
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9f1d

Способ определения характеристик пролета снарядов относительно центра мишени при стрельбе из артиллерийского оружия и информационно-вычислительная система для его осуществления

Группа изобретений относится к области полигонных испытаний и может быть использована для определения характеристик пролета снарядов относительно центра мишени. Техническим результатом является определение вида рассеивания снарядов относительно центра мишени при стрельбе из артиллерийского...
Тип: Изобретение
Номер охранного документа: 0002572370
Дата охранного документа: 10.01.2016
27.02.2016
№216.014.bffd

Способ определения баллистических характеристик снарядов и информационно-вычислительная система для его осуществления

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ заключается в измерении скоростей снарядов на основе фиксации временных интервалов при пролете снарядов относительно двух разнесенных между собой неконтактных...
Тип: Изобретение
Номер охранного документа: 0002576333
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.cc3d

Способ определения баллистических характеристик снарядов и информационно-вычислительная система для его осуществления

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ заключается в измерении скоростей снарядов на основе фиксации временных интервалов при пролете снарядов относительно двух разнесенных между собой неконтактных...
Тип: Изобретение
Номер охранного документа: 0002577077
Дата охранного документа: 10.03.2016
13.01.2017
№217.015.7331

Интеллектуальная система поддержки экипажа

Интеллектуальная система поддержки экипажа содержит датчики состояния двигателей, топливной системы, гидросистемы, системы электроснабжения, системы выпуска шасси и торможения, противообледенительной системы, противопожарной системы, системы воздушных сигналов, спутниковую навигационную...
Тип: Изобретение
Номер охранного документа: 0002598130
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.a17d

Способ определения зажигательной способности снаряда и устройство для его осуществления

Изобретение относится к области испытания боеприпасов и может быть использовано при определении зажигательного действия снарядов, имеющих взрыватель с замедлением. Измеряют скорость движения снаряда по формуле V=S/t, где S - расстояние между датчиками, t - время пролета снарядом расстояния...
Тип: Изобретение
Номер охранного документа: 0002606897
Дата охранного документа: 10.01.2017
29.12.2017
№217.015.f8c2

Регистратор температуры и скорости нестационарного газового потока

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его...
Тип: Изобретение
Номер охранного документа: 0002639737
Дата охранного документа: 22.12.2017
04.04.2018
№218.016.34ee

Регистратор давления и скорости ударной волны

Изобретение относится к измерительной технике и может быть использовано для определения давления и скорости ударной волны. Регистратор давления и скорости ударной волны содержит информационный датчик, n программируемых усилителей заряда и блок измерения, который состоит из аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002645904
Дата охранного документа: 28.02.2018
09.07.2020
№220.018.30b4

Способ управления вооружением многофункциональных самолетов тактического назначения и система для его осуществления

Изобретение относится к области управления вооружением многофункциональных самолетов тактического назначения. Способ управления вооружением многофункциональных самолетов тактического назначения заключается в том, что снаряжают летательные аппараты. Осуществляют запись в оперативную память...
Тип: Изобретение
Номер охранного документа: 0002725928
Дата охранного документа: 07.07.2020
Показаны записи 71-80 из 88.
10.03.2016
№216.014.cc3d

Способ определения баллистических характеристик снарядов и информационно-вычислительная система для его осуществления

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ заключается в измерении скоростей снарядов на основе фиксации временных интервалов при пролете снарядов относительно двух разнесенных между собой неконтактных...
Тип: Изобретение
Номер охранного документа: 0002577077
Дата охранного документа: 10.03.2016
13.01.2017
№217.015.7331

Интеллектуальная система поддержки экипажа

Интеллектуальная система поддержки экипажа содержит датчики состояния двигателей, топливной системы, гидросистемы, системы электроснабжения, системы выпуска шасси и торможения, противообледенительной системы, противопожарной системы, системы воздушных сигналов, спутниковую навигационную...
Тип: Изобретение
Номер охранного документа: 0002598130
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.a17d

Способ определения зажигательной способности снаряда и устройство для его осуществления

Изобретение относится к области испытания боеприпасов и может быть использовано при определении зажигательного действия снарядов, имеющих взрыватель с замедлением. Измеряют скорость движения снаряда по формуле V=S/t, где S - расстояние между датчиками, t - время пролета снарядом расстояния...
Тип: Изобретение
Номер охранного документа: 0002606897
Дата охранного документа: 10.01.2017
29.12.2017
№217.015.f8c2

Регистратор температуры и скорости нестационарного газового потока

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его...
Тип: Изобретение
Номер охранного документа: 0002639737
Дата охранного документа: 22.12.2017
04.04.2018
№218.016.34ee

Регистратор давления и скорости ударной волны

Изобретение относится к измерительной технике и может быть использовано для определения давления и скорости ударной волны. Регистратор давления и скорости ударной волны содержит информационный датчик, n программируемых усилителей заряда и блок измерения, который состоит из аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002645904
Дата охранного документа: 28.02.2018
20.06.2018
№218.016.6458

Способ одновременного измерения вектора скорости летательного аппарата и дальности до наземного объекта

Изобретение относится к области авиационного приборостроения и может быть использовано для выполнения полетных заданий, связанных с позиционированием летательного аппарата (ЛА) относительно наземного объекта при сближении с ним. Технический результат – повышение информативности. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002658115
Дата охранного документа: 19.06.2018
08.07.2018
№218.016.6dd3

Устройство регистрации параметров быстропротекающих процессов

Изобретение относится к измерительной технике и может быть использовано для определения параметров ударно-волнового и теплового полей, возникающих в окружающей среде в результате взрыва заряда взрывчатого вещества. В устройство регистрации параметров быстропротекающих процессов, содержащее...
Тип: Изобретение
Номер охранного документа: 0002660321
Дата охранного документа: 05.07.2018
26.09.2018
№218.016.8c1e

Способ предотвращения продольного выкатывания воздушных судов за пределы взлетно-посадочной полосы и устройство для его осуществления

Изобретение относится к авиационной технике, предназначено для предотвращения продольного выкатывания воздушных судов (ВС) в условиях посадки на скользкую взлетно-посадочную полосу (ВПП) и может быть использовано в современных самолетах и дистанционно пилотируемых беспилотных летательных...
Тип: Изобретение
Номер охранного документа: 0002668008
Дата охранного документа: 25.09.2018
31.01.2019
№219.016.b56a

Способ мониторинга технического состояния планера и шасси летательного аппарата и устройство для его осуществления

154 Группа изобретений относится к способу и устройству мониторинга технического состояния планера и шасси летательного аппарата. Для осуществления способа производят мониторинг ряда зон летательного аппарата в режиме постоянного времени определенным образом, подают сигнал тревоги в случае...
Тип: Изобретение
Номер охранного документа: 0002678540
Дата охранного документа: 29.01.2019
24.11.2019
№219.017.e5f1

Способ адаптивного сканирования подстилающей поверхности лучом лазерного локатора в режиме информационного обеспечения маловысотного полета

Изобретение относится к области авиационного приборостроения и может быть использовано для обеспечения безопасности полета на малых высотах. Известны реализации способа регулярного сканирования, при которых область формирования дальностного поля в координатах угол-угол совпадает с полем обзора...
Тип: Изобретение
Номер охранного документа: 0002706912
Дата охранного документа: 21.11.2019
+ добавить свой РИД