×
20.05.2013
216.012.410d

Результат интеллектуальной деятельности: СРЕДСТВО ДЛЯ УДАЛЕНИЯ РЖАВЧИНЫ, НАКИПИ И ДРУГИХ МИНЕРАЛЬНЫХ ОТЛОЖЕНИЙ НА ОСНОВЕ ГЛИОКСАЛЯ И ЕГО ПРОИЗВОДНЫХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей и может быть использовано для очистки поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, а также различных деталей и механизмов. Средство для удаления ржавчины, накипи и других минеральных отложений содержит компоненты при следующем соотношении, мас.%: 20-40 соляной кислоты, 1-3 растворимого ингибитора коррозии, 2-10 глиоксаля, 0,5-2 глиоксалевой кислоты, 0,5-2 гликолевой кислоты, 0,5-2 гликолевого альдегида, 0,01 пеногасителя, остальное вода. Средство обладает высокой эффективностью по отношению к удалению неорганических отложений различного состава и сниженным уровнем коррозионного воздействия. 2 табл., 4 пр.
Основные результаты: Средство для удаления ржавчины, накипи и других минеральных отложений с металлических поверхностей, содержащее соляную кислоту и растворимый ингибитор коррозии, отличающееся тем, что оно дополнительно содержит глиоксалевую и гликолевую кислоты, гликолевый альдегид, пеногаситель и глиоксаль в качестве дополнительного ингибитора коррозии при следующем соотношении компонентов, мас.%:

Настоящее изобретение относится к химическим средствам удаления ржавчины, накипи и минеральных отложений с металлических поверхностей.

Средство может быть использовано для удаления накипи и ржавчины с внутренних поверхностей теплообменных аппаратов, нагревательных элементов, трубопроводов, котлов, бойлеров, отопительных систем, очистки от ржавчины различных деталей и механизмов.

Известен состав для очистки поверхностей от минеральных отложений различного происхождения (Патент РФ 2160307, C11D 7/32, C11D 7/08, C11D 7/10, опубл. 10.12.2000). Средство применяется для очистки технологического оборудования (пастеризаторов, стерилизаторов и т.п.) и в других областях агропромышленного комплекса, в котлоочистке, для очистки поверхностей теплообменных аппаратов, резервуаров, трубопроводов и т.п. от накипи. Основным действующим агентом является смесь азотной кислоты с мочевиной в молярном соотношении 1:1. Использование азотной кислоты в качестве действующего агента, обладающего относительно слабой, не является эффективным в случае больших объемов отложений минерального происхождения.

Существуют технология накипных отложений с поверхности изделий с помощью средства, содержащего комплексон (24,0-24,6 г/л) и аскорбиновую кислоту (1,0-3,0 г/л) (Патент РФ 2114215, C23F 14/02, C23G 1/06, опубл. 27.06.1998). Состав является эффективным при очистке поверхности изделий, содержащих небольшие отложения, при большом объеме отложений предъявляются особые требования к интенсивности их удаления, наблюдается перерасход средства, возникает необходимость дополнительного подогрева, увеличению времени проведения очистки и т.д..

В тех случаях, когда наблюдается сильная степень загрязнения объекта, а также неизвестна природа неорганических отложений применяются сильные минеральные кислоты - серная, соляная и фосфорная. Применение серной кислоты приводит к повышенной коррозии технологического оборудования, особенно если оно выполнено из обычных марок сталей.

Наиболее близким к предлагаемому является состав для удаления высокотемпературных минеральных солеотложений с энергетического оборудования, содержащий нитрилтри(метиленфосфоновую) кислоту - 14-16%, метилиминодиметиленфосфоновую кислоту - 4-7%, соляную кислоту -10-14%, ингибитор кислотной коррозии - 0,5-1 (Патент РФ 2177458 C02F 5/14, C23F 14/02, опубл. 27.12.2001).

Недостатком предложенного состава является высокая стоимость применяемых компонентов, а также относительно низкая эффективность при удалении больших объемов минеральных отложений.

В промышленных трубопроводах и агрегатах, постоянно контактирующих с агрессивными химическими средами, растворами солей и другими технологическими жидкостями, образуется большой объем плотных отложений, состоящих из окислов металлов, отложений накипной природы (карбонаты кальция и магния), продуктов взаимодействия металла с агрессивными химически средами (соли и окислы металлов). При непрерывной безостановочной эксплуатации образуется большой объем отложений, значительно снижающий пропускную способность трубопроводов (уменьшение внутреннего диаметра) и эффективность работы технологического оборудования. Для эффективного удаления таких отложений требуется состав, обладающий высокой растворяющей способностью по отношению к отложениям, но в то же время с минимальным воздействием на очищаемые металлические поверхности. Еще одним требованием является низкая стоимость препарата, т.к. для удаления большого количества отложений требуется большой расход средства.

Задачей настоящего изобретения является разработка универсального средства для эффективного удаления больших объемов накипи, ржавчины и других минеральных отложений с металлических поверхностей, обладающего пониженным коррозионным воздействием на обрабатываемые поверхности, удешевление средства.

Поставленная задача достигается тем, что для удаления минеральных отложений используется состав, содержащий соляную кислоту и растворимый ингибитор коррозии, но в отличие от прототипа средство дополнительно содержит глиоксалевую и гликолевую кислоты, гликолевый альдегид, пеногаситель и глиоксаль в качестве дополнительного ингибитора коррозии при следующем соотношении компонентов, мас.%:

Соляная кислота 20-40
Растворимый ингибитор коррозии 1-3
Глиоксаль 2-10
Глиоксалевая кислота 0,5-2
Гликолевая кислота 0,5-2
Гликолевый альдегид 0,5-2
Пеногаситель 0,01
Вода остальное.

Введение в состав специальных органических кислот позволяет производить более эффективное растворение минеральных отложений, за счет образование хелатных комплексных соединений.

Использование высокоэффективного ингибирующего агента - глиоксаля, в дополнении к стандартному ингибитору коррозии, позволяет использовать более концентрированные растворы соляной кислоты, тем самым значительно повысить растворяющую способность средства, выполняя требования, предъявляемые к коррозионному воздействию.

При растворении отложений накипной природы (карбонаты кальция и магния) выделяется углекислый газ. При больших объемах отложений наблюдается интенсивное газовыделение при проведении процесса растворения. Для предотвращения вспенивания и снижения эффективности процесса в составе средства присутствует пеногаситель.

В составе средства присутствует глиоксаль, являющийся простейшим диальдегидом, и глиоклевый альдегид. Выраженная биоцидная активность альдегидов придает разработанному средству дизенфицируюшие свойства. Там образом, достигается не только удаление отложений, но и дезинфекция внутренней поверхности труб и технологического оборудования.

Ниже приведены примеры конкретного осуществления изобретения.

Пример 1

Приготовление средства осуществлялось в стеклянном химическом реакторе с верхнеприводной мешалкой рабочим объемом 10 л при комнатной температуре. При перемешивании (250 об/мин) в реактор последовательно водилось расчетное количество компонентов (вода, гликолевая кислота, глиоксалевая кислота, катасол 28-3, бутанол-1, глиоксаль, гликолевый альдегид, соляная кислота).

В результате был получен раствор, содержащий 31,8% соляной кислоты, 2,6% растворимого ингибитора коррозии (Катасола 28-3), 9,8% глиоксаля, 1,8% глиоксалевой, 1,8% гликолевой кислот, 1,2% гликолевого альдегида и 0,01% пеногасителя (бутанола-1).

Для испытания взяты отрезки трубы с отложениями минеральной природы. Внутренний диаметр трубы 80 мм. Усредненный диаметр просвета в отложениях 45 мм. Визуально наблюдается радиальная неоднородность (по структуре и цветности) отложений. Элементный состав отложений из поверхностного и пристеночного участка отложений приведен в таблице 1.

Отколотые пробы отложений (m=2,3 г отложений поверхностной части и m=2,6 г отложений пристеночной части) помещались в раствор приготовленного средства 1:1. Время полного растворения составило 40 мин.

Пример 2

Был приготовлен раствор, указанный в примере 1. Указанный отрезок трубы со слоем отложений помещался в химический стакан объемом 1 л, заполненный раствором средства 1:1. Наблюдалась интенсивная реакция, сопровождающаяся выделением газообразных продуктов. Отрезок трубы выдерживался в течение 15 часов, затем рабочий раствор был заменен на свежий. По прошествии дополнительных двух часов наблюдается полное растворение отложений, без видимых следов коррозии поверхности трубы. Начальная масса отрезка трубы с отложениями 366,0 г. После полного удаления отложений масса составила 190,3 г. Таким образом, были удалены отложения, составляющие 48% массы трубы. При организации очистки больших объемов минеральных отложений организуется циркуляция раствора средства по замкнутому контуру. Оптимальное разведение средства устанавливается исходя из состава и количества отложений, а также состава сплава, из которого изготовлено оборудование.

Пример 3

Был приготовлен раствор, указанный в примере 1.

При обычном уровне отложения рекомендуемое разведение средства составляет 1:5. В качестве объекта для испытаний по определению коррозионного воздействия на сталь выбраны прутки из ст.3 диаметром (6,0±0,1) мм, высотой (65,0-70,0) мм. Первичная обработка проводилась раствором соляной кислоты 1% (мас.) для снятия окислов с поверхности образцов. Обработка проводилась при комнатной температуре в течение 60 минут. После первичной обработки пруток выдерживали в горячей дистиллированной воде в течение 30 минут для удаления образовавшихся солей с поверхности образцов. После этого пруток подвергался сушке ацетоном и теплым воздухом. Высушенный пруток взвешивался на аналитических весах с точностью до 0,001 г. При помощи штангенциркуля замерялись размеры прутка.

Пруток помещался в химический стакан с раствором (1:5) средства (80 мл) так, чтобы средство полностью покрывало пруток и выдерживался в течение 24 ч при комнатной температуре.

После завершения испытаний пруток промыли под струей воды и высушили на воздухе. После этого производилось повторное взвешивание.

Величина коррозионного воздействия для ст.35 составила 0,19 г/м2ч.

Пример 4

Был приготовлен раствор, указанный в примере 1.

Для испытаний взяты отрезки экранных труб поверхностей нагрева газомазутного вертикально-водотурбинного котла ТГМ-96, содержащих отложения неорганической природы. Химический состав отложений на огневой стороне трубы: 62,1% оксида железа, 15,2% оксида меди, 4,5% оксида фосфора, 2,3% оксида кальция, 2,3% оксида кремния, 11,2% нерастворимых примесей. Удельная загрязненность составила 480 г/м2. Химический состав отложений на тыловой стороне трубы: 57,7% оксида железа, 28,2% оксида меди, 4,4% оксида фосфора, 3,6% оксида кальция, 1,7% оксида кремния, 3,4% нерастворимых примесей. Удельная загрязненность 200 г/м2.

Проводилась параллельная обработка образцов труб 5% раствором соляной кислоты и водным раствором предлагаемого средства (1:10). Результаты испытаний представлены в таблице 2.

Из таблицы видно, что интенсивность удаления больших объемов минеральных отложений растровом предлагаемого средства более чем в 20 раз превосходит интенсивность удаления отложений раствором соляной кислоты, имеющей тот же водородный показатель (рН).

Таким образом, разработанное средство, обладая высокой эффективностью по отношению к удалению неорганических отложений различного состава, обладает сниженным уровнем коррозионного воздействия.

Таблица 1
Элементный состав отложений из различных участков
Элемент Массовое содержание, %
Проба 1 (отложения поверхностной части) Проба 2 (отложения пристеночной части)
O 52.40 49.91
Mg 16.44 6.23
Са 13.39 21.08
С 10.77 16.59
S 4.18 0.79
Si 0.98 0.49
Fe 0.98 2.80
Na 0.94 0.81
Cl 0.22 0.18
P 0.15 0.17
Al 0.13 0.61
Mn 0.07 0.19
Sr 0.05 0.058
K 0.04 0.03

Таблица 2
Результаты сравнительных испытаний раствора предлагаемого средства 1:10 и 5% раствора соляной кислоты.
Пробы Раствор предлагаемого средства (1:10) Раствор соляной кислоты (5 мас.%)
Т, °С pH Время выдержки, мин Количество удаленных отложений, г/м2 Т, °С pH Время выдержки, мин Количество удаленных отложений, г/м2
Огневая сторона трубы котла 60 0,38 2 477,47 40 0,40 40 434,0
Тыльная сторона трубы котла 60 0,38 2 171,3 40 0,40 40 200,0

Средство для удаления ржавчины, накипи и других минеральных отложений с металлических поверхностей, содержащее соляную кислоту и растворимый ингибитор коррозии, отличающееся тем, что оно дополнительно содержит глиоксалевую и гликолевую кислоты, гликолевый альдегид, пеногаситель и глиоксаль в качестве дополнительного ингибитора коррозии при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 71-71 из 71.
20.05.2023
№223.018.65e7

Способ получения огнезащитной добавки на основе гликолурила

Изобретение может быть использовано для производства материалов с пониженной горючестью. Способ получения огнезащитной добавки на основе гликолурила включает смешение гликолурила и трифенилфосфита с алифатическим или ароматическим альдегидом. Реакцию ведут в присутствии катализатора кислоты...
Тип: Изобретение
Номер охранного документа: 0002778788
Дата охранного документа: 24.08.2022
Показаны записи 81-90 из 93.
15.04.2020
№220.018.14cf

Быстрый и масштабируемый способ получения мезопористого терефталата хрома(iii)

Изобретение относится к области химии и химической технологии, а именно к координационной и синтетической химии металл-органических координационных полимеров, обладающих сорбционной емкостью, в частности к способу получения микропористого терефталата хрома(III), который может быть использован...
Тип: Изобретение
Номер охранного документа: 0002718677
Дата охранного документа: 13.04.2020
22.04.2020
№220.018.16db

Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов c - c

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С-С в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового...
Тип: Изобретение
Номер охранного документа: 0002719490
Дата охранного документа: 17.04.2020
23.04.2020
№220.018.1819

Быстрый и масштабируемый способ получения микропористого терефталата циркония(iv)

Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых смесей CO/N, CO/CH. Способ получения микропористого терефталата...
Тип: Изобретение
Номер охранного документа: 0002719597
Дата охранного документа: 21.04.2020
23.04.2020
№220.018.1827

Быстрый и масштабируемый способ получения микропористого 2-метилимидазолата цинка

Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO, паров органических соединений (бензол) или разделения газовых...
Тип: Изобретение
Номер охранного документа: 0002719596
Дата охранного документа: 21.04.2020
18.06.2020
№220.018.2778

Способ получения кускового силикагеля

Изобретение относится к способам получения технического кускового силикагеля. Способ получения кускового силикагеля включает смешивание раствора жидкого стекла с раствором серной кислоты при 15-25°C, гелирование раствора при температуре 15-30°C в течение 20-40 часов, измельчение, отмывку и...
Тип: Изобретение
Номер охранного документа: 0002723623
Дата охранного документа: 16.06.2020
24.07.2020
№220.018.36aa

Способ получения пропилпропионата

Изобретение относится к способу получения пропилпропионата в среде пропилового спирта с использованием этилена и окиси углерода на октакарбониле дикобальта с использованием азотсодержащего органического основания при повышенных давлении и температуре, где осуществляют подачу в реактор окиси...
Тип: Изобретение
Номер охранного документа: 0002727507
Дата охранного документа: 22.07.2020
07.08.2020
№220.018.3dd0

Способ получения октакарбонила дикобальта

Изобретение относится к химической промышленности, а именно к технологии получения октакарбонила дикобальта Co(CO), применяющегося, в частности, для получения высокочистого металлического кобальта, нанесения кобальтсодержащих покрытий, катализатора процессов оксосинтеза. В реактор...
Тип: Изобретение
Номер охранного документа: 0002729231
Дата охранного документа: 05.08.2020
12.04.2023
№223.018.42ac

Стабилизированная трехвходовая аксиально-радиальная электрическая машина-генератор

Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя кинетической энергии ветра, преобразованной ветроколесом в механическую энергию вращения, подаваемой на механический вход машины,...
Тип: Изобретение
Номер охранного документа: 0002759598
Дата охранного документа: 16.11.2021
10.05.2023
№223.018.53b2

Способ получения этилпропионата

Изобретение относится к химической промышленности, конкретно к способу получения этилпропионата, применяемого в качестве растворителя в лакокрасочной промышленности и в органическом синтезе. Способ осуществляется в среде этилового спирта с использованием этилена и окиси углерода и...
Тип: Изобретение
Номер охранного документа: 0002795267
Дата охранного документа: 02.05.2023
16.05.2023
№223.018.5ef8

Способ получения продуктов оксосинтеза на основе этилена

Настоящее изобретение относится к способу получения катализатора процесса на основе соединений кобальта и продуктов оксосинтеза на основе этилена, включающему взаимодействие этилена с окисью углерода и водорода в реакторе-автоклаве с использованием регенерируемой каталитической системы на...
Тип: Изобретение
Номер охранного документа: 0002756174
Дата охранного документа: 28.09.2021
+ добавить свой РИД