×
20.05.2013
216.012.406b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Широкопористый оксид алюминия в гамма-форме получают осаждением гидроксида алюминия из раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч. Пасту с влажностью 58÷66% формуют. Пасту получают смешением (66÷70)% влажного осадка гидроксида алюминия и порошка, высушенного на распылительной сушилке (30÷34)% влажного осадка гидроксида алюминия, приготовленного в виде суспензии. После формовки проводят сушку и прокаливание. Изобретение позволяет получить широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м/г, объемом пор - (0,82÷1,09) см/г и средним диаметром пор - 9,2÷11 нм. 8 ил., 8 пр., 1 табл.
Основные результаты: Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.

Изобретение относится к способу получения широкопористого оксида алюминия в γ-форме, широко используемого в химической и нефтехимической промышленности [Иванова А.С. Оксид алюминия: применение, способы получения, структура и кислотно-основные свойства. // Промышленный катализ в лекциях, 2009, №8, с.7-61] в качестве катализатора и компонента сложных катализаторов, носителя при синтезе как металлических, так и оксидных катализаторов, а также в качестве адсорбента (для обезвоживания газов и жидкостей).

Выпускаемые отечественными производителями оксиды алюминия по "алюминатной" или "сульфатной" технологии содержат значительные количества примесей, главным образом натрия и сульфат-ионов, наличие которых существенным образом снижает активность большинства катализаторов, полученных на его основе. Кроме того, отечественные образцы оксида алюминия имеют преимущественно бимодальное или полидисперсное распределение пор по размерам, тогда как для интенсификации процессов нефтепереработки, нефтехимии, а также для получения продукции специального назначения, необходима новая модификация оксидного материала - высокочистый широкопористый оксид алюминия с мономодальным распределением пор по размерам, производство которого в России отсутствует.

Активный оксид алюминия в виде γ-формы получают, как правило, термическим разложением гидроксида алюминия псевдобемитной структуры (AlOOH х n Н2О) при температуре 500-600°С, характеризующегося высокой величиной удельной поверхности (300-500) м2/г, относительно большим объемом пор (0,8-1,2) см3/г и высокой термической стабильностью.

Известно [SU 852798, C01F 7/34, 1981; CN 101332997(A), C01B 3/08, 2008], что высокочистый оксид алюминия получают по золь-гель-методу с использованием в качестве исходных предшественников алкоголятов алюминия; синтез гидроксида алюминия включает следующие стадии: гидролиза алкоголята алюминия, конденсации и образования мономеров, димеров и олигомеров. Свойства осадка можно регулировать соотношением воды и алкоксида [Gonzalez R.D., Lopez Т., Gomez R. Sol-Gel preparation of supported metal catalysts. // Catalysis Today, 1997. V.35, №3, P.293; CN 1419961 (A), B01J 19/30 2003; CN 1807246(A), B01J 21/04, 2006], изменяя величину удельной поверхности от 250 до 500 м2/г при одновременном уменьшении диаметра пор от 15 до 9 нм, формируя мономодальное распределение пор по размерам. К недостаткам метода, основанного на гидролизе алкоксидов, следует отнести специфичность исходного сырья, необходимость предотвращения контакта с окружающей средой и строго соблюдать соотношение вода/алкоксид и использовать специальное оборудование; кроме того, получаемый гидроксид и оксид алюминия имеет большую себестоимость по сравнению с методом осаждения растворов солей алюминия {Al(NO3)3, AlCl3, Al2(SO4)3, NaAlO2} водным раствором осадителя {NH4OH, NaOH, KOH, HNO3}. Показано [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110], что путем изменения рН, температуры осаждения и продолжительности «старения» (выдерживания суспензии при заданных условиях) можно варьировать фазовый состав и текстурные характеристики получаемого гидроксида и оксида алюминия.

В зависимости от рН среды ионизация Al-содержащих молекул происходит следующим образом [Иванова А.С., Пугач М.М., Мороз Э.М. и др. Влияние условий получения на физико-химические свойства гидроксидов алюминия и магния. // Изв. АН СССР, Сер.хим., 1989. №10, С.2169-2176]:

,

,

,

.

Химическая чистота получаемого гидроксида и оксида алюминия зависит от природы исходных предшественников и наиболее подходящими являются азотнокислый алюминий и водный раствор аммиака, а именно: Al(NO3)3+3NH4OH→AlOOH↓ (Al(ОН)3↓)+3NH4NO3. В зависимости от условий осаждения получаемый осадок может представлять собой либо псевдобемит - AlOOH, либо байерит - Al(ОН)3. Известен способ получения гидроксида алюминия байеритной структуры [Пат. 236438, (РФ). Способ получения байеритного гидроксида алюминия. // В.А.Дзисько, Т.С.Винникова, Ю.О.Булгакова].

Наиболее близким к заявляемому по технической сущности является способ получения гидроксида алюминия псевдобемитной структуры, описанный в [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110-119]. Гидроксид алюминия псевдобемитной структуры получают либо:

1) по «двухстадийному» способу, согласно которому часть гидроксида алюминия осаждают при комнатной температуре («холодное» осаждение - ХО), а другую часть - осаждением при 100°С («горячее» осаждение - ГО), затем обе части ХО и ГО смешивают, выдерживают в течение определенного времени, затем фильтруют, промывают; формование гранул гидроксида алюминия проводят в присутствии кислоты при определенном кислотном модуле; полученные ганулы сушат и прокаливают при требуемой температуре. Основной недостаток получаемого гидроксида и оксида алюминия состоит в том, что при смешении осадков ХО и ГО грубодисперсные агрегаты ГО образуют каркас, в макропорах которого размещается высокодисперсная фаза ХО, в результате формируется бимодальное распределение пор по размерам;

2) осаждением раствора азотнокислой соли алюминия водным раствором аммиака при постоянных значениях рН и температуры, значения которых определяют в большей степени свойства получаемого гидроксида алюминия, а следовательно, и оксида алюминия. Оксид алюминия, полученный из гидроксида, осажденного при комнатной температуре и невысоких рН, обладает мономодальным распределением пор по размерам с преобладающим диаметром пор, равным 8,0 нм; а полученный из гидроксида, осажденного при 100°С, бимодальным распределением пор по размерам.

Изобретение решает задачу получения широкопористого оксида алюминия в γ-форме с мономодальным распределением пор по размерам, средний диаметр которых составляет 9,0-11,0 нм.

Задача решается способом получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, при этом осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58-66%, полученной смешением (66-70)% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке (30-34)% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый оксид алюминия, характеризующегося мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м2/г, объемом пор - (0,82÷1,09) см3/г и средним диаметром пор - 9,2÷11 нм.

Отличительные признаки предлагаемого способа получения гамма-оксида алюминия:

1. Способ получения, включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1 и температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч.

2. Способ получения, включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66% с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см3/г, средний диаметр которых составляет 9,2-11 нм.

Основные характеристики получаемого гамма-оксида алюминия определяют:

- фазовый состав на дифрактометре HZG-4C (Германия) в монохроматическом излучении CuKα (λ=1,5418 Å) в интервале углов от 10 до 75° (по 2θ) с шагом сканирования τ=0,05 градуса 2θ и временем накопления 5 с в каждой точке. Фазовый анализ проводят по программе PCW.2.4 путем сопоставления экспериментальных дифрактограмм и теоретически рассчитанных на основе известных структур, взятых из базы структурных данных ICDS с учетом профиля дифракционных линий;

- текстурные характеристики (величину Sуд, объем пор - Vп, средний диаметр пор - dпop и распределение пор по размерам) методом низкотемпературной (-196°С) адсорбции азота на установке ASAP-2400 Micromeritics; предварительно образцы тренируют в вакууме при 150°С.

Получение гамма-оксида алюминия включает осаждение раствора азотнокислого алюминия водным раствором аммиака при постоянном рН, равным 7±0,1, температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч, после чего осадок отфильтровывают, промывают дистиллированной водой. Одну часть влажного осадка разбавляют дистиллированной водой для приготовления суспензии с концентрацией (120±5)г Al2O3/л, которую подают на распылительной сушилку, получают порошок с размерами частиц, не превышающих 15-20 мкм, который смешивают с двумя другими частями влажного осадка с образованием пасты с влажностью 58÷66%, которую формуют в виде гранул с последующей их сушкой на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают в токе осушенного воздуха при 550-600°С в течение 4-х ч.

Сущность предлагаемого изобретения иллюстрируется следующими примерами, показывающими изменение фазового состава и текстурных характеристик получаемого оксида алюминия в зависимости от условий осаждения и формования.

Основные характеристики гамма-оксида алюминия приведены в таблице и на Фиг.1-8.

Пример 1.

В реактор, помещенный в термостат, заливают 500 мл дистиллированной воды, устанавливают рН-метр и включают обогрев реактора и мешалку; при достижении температуры 70°С в реактор дозируют раствор азотнокислого алюминия, содержащего 100 г Al2O3, со скоростью 25 мл/мин, одновременно добавляя 900 мл водного раствора NH4OH для поддержания рН осаждения, равным 7,0±0,1. Полученную суспензию выдерживают при указанных условиях в течение 3 ч, после чего фильтруют и промывают дистиллированной водой. Одну третью часть отмытого влажного осадка разбавляют дистиллированной водой до концентрации (120±5)г Al2O3/л и полученную суспензию подают на распылительную сушилку для получения порошка с размером частиц не более 15-20 мкм. Высушенный порошок гидроксида алюминия смешивают с остальными 2/3 частями влажного осадка с образованием пасты с влажностью 62,3%, которую формуют в виде гранул, сушат на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают при 550°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.1.

Пример 2.

Аналогичен примеру 1. Отличие состоит в том, что влажность формуемой пасты составляет 60,3%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.4.

Пример 3.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 4 ч. Влажность формуемой пасты составляет 59,9%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.2.

Пример 4.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 5 ч. Влажность формуемой пасты составляет 65,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.3.

Пример 5.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 63,0%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.5.

Пример 6.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 58,1%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.6.

Пример 7.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 7,0±0,1 и температуре 90°С. Влажность формуемой пасты составляет 59,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.7.

Пример 8.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 9,0 и температуре 70°С. Влажность формуемой пасты составляет 61,5%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.8.

Показатели γ-оксида алюминия по всем примерам приведены в таблице и на Фиг.1-8.

Таблица
Основные показатели гамма-оксида алюминия
№№ при мера Условия получения рН-Т-τ (ч) Влажность формуемой пасты, % Tпрок, °C Фазовый состав Текстурные характеристики
S,м2 Vп,см3 dпор, нм Распределение пор по размерам
1 7-70-3 62,3 550 γ-Al2O3 340 0,87 10,1 Мономодальное
2 7-70-3 60,3 600 γ-Al2O3 345 1,09 11,0 Мономодальное
3 7-70-4 59,9 600 γ-Al2O3 355 0,94 10,6 Мономодальное
4 7-70-5 65,7 550 γ-Al2O3 370 1,01 11,0 Мономодальное
5 7-70-5 63,0 550 γ-Al2O3 350 0,84 9,5 Мономодальное
6 7-70-5 58,1 550 γ-Al2O3 355 0,82 9,2 Мономодальное
7 7-90-5 59,7 550 γ-Al2O3 298 0,45 6,1 Мономодальное
8 9-70-5 61,5 550 γ-Al2O3 270 0,44 6,5 Мономодальное

Распределение пор по размерам по всем примерам приведены на Фиг.1-8.

Фиг.1. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 62,3%, прокаленного при 550°С.

Фиг.2. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 60,3%, прокаленного при 600°С.

Фиг.3. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-4, при влажности формуемой пасты - 59,9%, прокаленного при 600°С.

Фиг.4. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 65,7%, прокаленного при 550°С.

Фиг.5. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 63,0%, прокаленного при 550°С.

Фиг.6. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 58,1%, прокаленного при 550°С.

Фиг.7. Распределение пор по размерам для γ-Al2O3, полученного при 7-90-5, при влажности формуемой пасты - 59,7%, прокаленного при 550°С.

Фиг.8. Распределение пор по размерам для γ-Al2O3, полученного при 9-70-5, при влажности формуемой пасты - 61,5%, прокаленного при 550°С.

Как видно из приведенных примеров, таблицы и Фиг., предлагаемый нитратно-аммиачный способ осаждения при рН 7, температуре 70°С и времени выдержки суспензии при указанных условиях в течение 3-5 ч с последующим формованием гранул при влажности формуемой пасты 58÷66% позволяет решать задачу получения широкопористого оксида алюминия в γ-форме с величиной удельной поверхности, равной (340-370) м2/г, объемом пор - (0,82-1,09) см3/г и средним диаметром пор - 9,2-11 нм, при этом распределение по размерам является мономодальным.

Повышение температуры осаждения до 90°С или повышение рН осаждения до 9 при одном и том же времени выдержки суспензии (τ=5 ч) приводит к значительному снижению величины удельной поверхности, объема пор и среднего диаметра пор при сохранении мономодального распределения пор по размерам.

Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 366.
10.09.2015
№216.013.7ab9

Электровоспламенитель

Изобретение относится к области электрических средств воспламенения и предназначено для автономного воспламенения взрывчатых веществ, пиротехнических композиций и т.п., например, в фейерверках, или в составе электрических средств инициирования и пироавтоматики. Электровоспламенитель содержит...
Тип: Изобретение
Номер охранного документа: 0002563006
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7ad1

Устройство управления инжектором

Изобретение относится к области транспорта и может быть использовано в легковых и грузовых автомобилях, строительной и сельскохозяйственной технике, тепловозах и судах промышленного и военного назначения. Техническим результатом является повышение надежности работы, уменьшение...
Тип: Изобретение
Номер охранного документа: 0002563038
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7ade

Электромеханическая форсунка для аккумуляторной топливной системы двигателя внутреннего сгорания

Изобретение относится к области двигателестроения, а именно к системам питания двигателей внутреннего сгорания. Электромеханическая форсунка двигателя с впрыскиванием топлива в цилиндр, имеющая гидравлическую разгрузку запорной иглы от сил давления топлива с помощью разгружающего плунжера, что...
Тип: Изобретение
Номер охранного документа: 0002563051
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.814e

Способ измерения добротности резонансного контура и устройство для его реализации

Изобретение относится к измерительной технике. Способ измерения добротности резонансного контура заключается в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний за счет введения отрицательной обратной связи по их амплитуде с помощью схемы...
Тип: Изобретение
Номер охранного документа: 0002564699
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8313

Способ снижения радиолокационной заметности летательного аппарата

Изобретение относится к защитным устройствам летательного аппарата. Способ снижения радиолокационной заметности летательного аппарата заключается в размещении антенны головки самонаведения в герметичной полости радиопрозрачного обтекателя, заполнении полости плазмообразующей газовой смесью...
Тип: Изобретение
Номер охранного документа: 0002565158
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.879d

Способ управления комбинированной силовой установкой гибридного транспортного средства

Изобретение относится к гибридным транспортным средствам. Способ управления комбинированной силовой установкой гибридного транспортного средства заключается в том, что в навигационную систему транспортного средства вводят данные о проходимом маршруте в 3D-формате и по сигналам навигационной...
Тип: Изобретение
Номер охранного документа: 0002566320
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.88a9

Способ изготовления блоков термоизоляционной герметичной стенки емкости нового типа из полимерных композиционных материалов для сжиженного природного газа

Изобретение относится к области судостроения и касается создания блоков термоизоляционной герметичной стенки из полимерных композиционных материалов (ПКМ) емкостей нового типа, используемых для перевозки жидких грузов и сжиженных газов. Изготовление блока производится за один технологический...
Тип: Изобретение
Номер охранного документа: 0002566588
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.88be

Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов

Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании...
Тип: Изобретение
Номер охранного документа: 0002566609
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.897a

Якорное устройство судна

Изобретение относится к области судостроения и касается вопроса использования нетрадиционной компоновки якорного устройства. Предложено якорное устройство судна, включающее якорный механизм, расположенный на внутренней палубе, по меньшей мере один якорь с трендом и лапами, связанный с якорным...
Тип: Изобретение
Номер охранного документа: 0002566797
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8981

Корпус водоизмещающего судна-полутримарана

Изобретение относится к области судостроения и касается конструирования обводов корпусов водоизмещающих судов, сочетающих элементы, характерные для обводов однокорпусных судов и тримаранов. Корпус водоизмещающего судна-полутримарана имеет носовую оконечность с обводами водоизмещающего...
Тип: Изобретение
Номер охранного документа: 0002566804
Дата охранного документа: 27.10.2015
Показаны записи 141-150 из 272.
10.06.2015
№216.013.50b4

Устройство защиты от контрафакта и фальсификации интегральных схем

Изобретение относится к полупроводниковым микроэлектронным устройствам, а именно - к устройствам защиты от контрафакта и фальсификации интегральных схем (ИС), которые встраиваются в кристалл ИС. Технический результат - проверка подлинности ИС (т.е. ИС является либо подлинной, либо контрафактной...
Тип: Изобретение
Номер охранного документа: 0002552181
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55bc

Устройство для подвода к двигателю газообразного топлива

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство для подвода к двигателю газообразного топлива, содержащее трубку 1 для подачи газообразного топлива к впускному клапану 3 цилиндра двигателя, расположенную во впускном канале 4 головки цилиндров....
Тип: Изобретение
Номер охранного документа: 0002553478
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55bd

Устройство для питания двигателя газообразным топливом

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство для питания двигателя газообразным топливом, содержащее трубку 1 для подвода газообразного топлива к впускному клапану 3 цилиндра двигателя. Трубка 1 размещена во впускном канале 4 головки цилиндров 5...
Тип: Изобретение
Номер охранного документа: 0002553479
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55c6

Система охлаждения с отключаемыми радиаторами

Изобретение относится к конструкциям систем охлаждения узлов и агрегатов транспортного средства. Система охлаждения с отключаемыми радиаторами содержит не менее одного охлаждаемого объекта (1), более одного радиатора (4) с вентилятором и более одного насоса (6). Радиаторы и насосы соединены...
Тип: Изобретение
Номер охранного документа: 0002553488
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.55de

Устройство вертостата с одним или двумя несущими винтами

Изобретение относится к области авиации, в частности к воздухоплаванию, а именно к конструкциям аэростатических летательных аппаратов с несущими винтами. Летательный аппарат вертостат содержит оболочку с несущим газом (1), один или два несущих винта (2), кабину для экипажа и пассажиров (3),...
Тип: Изобретение
Номер охранного документа: 0002553512
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5845

Способ изготовления резинокордных патрубков

Изобретение относится к изготовлению резинокордных изделий, в частности к изготовлению резинокордных патрубков, предназначенных для эксплуатации под давлением в маслобензостойких средах при повышенной рабочей температуре 150°C. Техническим результатом способа является повышение прочности связи...
Тип: Изобретение
Номер охранного документа: 0002554138
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a80

Способ изготовления клиновидного радиопрозрачного переднего обтекателя корпуса сверхзвукового летательного аппарата

Изобретение относится к способу изготовления термостойкого элемента корпуса сверхзвукового летательного аппарата (ЛА) и касается переднего радиопрозрачного обтекателя корпуса. При изготовлении клиновидного радиопрозрачного переднего обтекателя корпуса ЛА применяют объемную многослойную пряжу...
Тип: Изобретение
Номер охранного документа: 0002554709
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.62b6

Движительно-рулевое устройство

Изобретение относится к области морской подводной техники, а именно к конструкциям движительно-рулевых устройств подводных аппаратов. Движительно-рулевое устройство содержит гребной винт, который размещен в направляющей насадке. Направляющая насадка представляет собой кольцевое крыло. На...
Тип: Изобретение
Номер охранного документа: 0002556817
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.62ba

Силовая установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям силовых установок подводных аппаратов. Силовая установка подводного аппарата содержит высокооборотный электродвигатель переменного тока, который соединен с движителем аппарата через редуктор. Редуктор выполнен одноступенчатым с...
Тип: Изобретение
Номер охранного документа: 0002556821
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6490

Двигательно-движительная установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям двигательно-движительных установок подводных аппаратов, работающих на больших глубинах. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, магнитную муфту и движитель....
Тип: Изобретение
Номер охранного документа: 0002557291
Дата охранного документа: 20.07.2015
+ добавить свой РИД