×
20.05.2013
216.012.406b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Широкопористый оксид алюминия в гамма-форме получают осаждением гидроксида алюминия из раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч. Пасту с влажностью 58÷66% формуют. Пасту получают смешением (66÷70)% влажного осадка гидроксида алюминия и порошка, высушенного на распылительной сушилке (30÷34)% влажного осадка гидроксида алюминия, приготовленного в виде суспензии. После формовки проводят сушку и прокаливание. Изобретение позволяет получить широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м/г, объемом пор - (0,82÷1,09) см/г и средним диаметром пор - 9,2÷11 нм. 8 ил., 8 пр., 1 табл.
Основные результаты: Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.

Изобретение относится к способу получения широкопористого оксида алюминия в γ-форме, широко используемого в химической и нефтехимической промышленности [Иванова А.С. Оксид алюминия: применение, способы получения, структура и кислотно-основные свойства. // Промышленный катализ в лекциях, 2009, №8, с.7-61] в качестве катализатора и компонента сложных катализаторов, носителя при синтезе как металлических, так и оксидных катализаторов, а также в качестве адсорбента (для обезвоживания газов и жидкостей).

Выпускаемые отечественными производителями оксиды алюминия по "алюминатной" или "сульфатной" технологии содержат значительные количества примесей, главным образом натрия и сульфат-ионов, наличие которых существенным образом снижает активность большинства катализаторов, полученных на его основе. Кроме того, отечественные образцы оксида алюминия имеют преимущественно бимодальное или полидисперсное распределение пор по размерам, тогда как для интенсификации процессов нефтепереработки, нефтехимии, а также для получения продукции специального назначения, необходима новая модификация оксидного материала - высокочистый широкопористый оксид алюминия с мономодальным распределением пор по размерам, производство которого в России отсутствует.

Активный оксид алюминия в виде γ-формы получают, как правило, термическим разложением гидроксида алюминия псевдобемитной структуры (AlOOH х n Н2О) при температуре 500-600°С, характеризующегося высокой величиной удельной поверхности (300-500) м2/г, относительно большим объемом пор (0,8-1,2) см3/г и высокой термической стабильностью.

Известно [SU 852798, C01F 7/34, 1981; CN 101332997(A), C01B 3/08, 2008], что высокочистый оксид алюминия получают по золь-гель-методу с использованием в качестве исходных предшественников алкоголятов алюминия; синтез гидроксида алюминия включает следующие стадии: гидролиза алкоголята алюминия, конденсации и образования мономеров, димеров и олигомеров. Свойства осадка можно регулировать соотношением воды и алкоксида [Gonzalez R.D., Lopez Т., Gomez R. Sol-Gel preparation of supported metal catalysts. // Catalysis Today, 1997. V.35, №3, P.293; CN 1419961 (A), B01J 19/30 2003; CN 1807246(A), B01J 21/04, 2006], изменяя величину удельной поверхности от 250 до 500 м2/г при одновременном уменьшении диаметра пор от 15 до 9 нм, формируя мономодальное распределение пор по размерам. К недостаткам метода, основанного на гидролизе алкоксидов, следует отнести специфичность исходного сырья, необходимость предотвращения контакта с окружающей средой и строго соблюдать соотношение вода/алкоксид и использовать специальное оборудование; кроме того, получаемый гидроксид и оксид алюминия имеет большую себестоимость по сравнению с методом осаждения растворов солей алюминия {Al(NO3)3, AlCl3, Al2(SO4)3, NaAlO2} водным раствором осадителя {NH4OH, NaOH, KOH, HNO3}. Показано [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110], что путем изменения рН, температуры осаждения и продолжительности «старения» (выдерживания суспензии при заданных условиях) можно варьировать фазовый состав и текстурные характеристики получаемого гидроксида и оксида алюминия.

В зависимости от рН среды ионизация Al-содержащих молекул происходит следующим образом [Иванова А.С., Пугач М.М., Мороз Э.М. и др. Влияние условий получения на физико-химические свойства гидроксидов алюминия и магния. // Изв. АН СССР, Сер.хим., 1989. №10, С.2169-2176]:

,

,

,

.

Химическая чистота получаемого гидроксида и оксида алюминия зависит от природы исходных предшественников и наиболее подходящими являются азотнокислый алюминий и водный раствор аммиака, а именно: Al(NO3)3+3NH4OH→AlOOH↓ (Al(ОН)3↓)+3NH4NO3. В зависимости от условий осаждения получаемый осадок может представлять собой либо псевдобемит - AlOOH, либо байерит - Al(ОН)3. Известен способ получения гидроксида алюминия байеритной структуры [Пат. 236438, (РФ). Способ получения байеритного гидроксида алюминия. // В.А.Дзисько, Т.С.Винникова, Ю.О.Булгакова].

Наиболее близким к заявляемому по технической сущности является способ получения гидроксида алюминия псевдобемитной структуры, описанный в [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110-119]. Гидроксид алюминия псевдобемитной структуры получают либо:

1) по «двухстадийному» способу, согласно которому часть гидроксида алюминия осаждают при комнатной температуре («холодное» осаждение - ХО), а другую часть - осаждением при 100°С («горячее» осаждение - ГО), затем обе части ХО и ГО смешивают, выдерживают в течение определенного времени, затем фильтруют, промывают; формование гранул гидроксида алюминия проводят в присутствии кислоты при определенном кислотном модуле; полученные ганулы сушат и прокаливают при требуемой температуре. Основной недостаток получаемого гидроксида и оксида алюминия состоит в том, что при смешении осадков ХО и ГО грубодисперсные агрегаты ГО образуют каркас, в макропорах которого размещается высокодисперсная фаза ХО, в результате формируется бимодальное распределение пор по размерам;

2) осаждением раствора азотнокислой соли алюминия водным раствором аммиака при постоянных значениях рН и температуры, значения которых определяют в большей степени свойства получаемого гидроксида алюминия, а следовательно, и оксида алюминия. Оксид алюминия, полученный из гидроксида, осажденного при комнатной температуре и невысоких рН, обладает мономодальным распределением пор по размерам с преобладающим диаметром пор, равным 8,0 нм; а полученный из гидроксида, осажденного при 100°С, бимодальным распределением пор по размерам.

Изобретение решает задачу получения широкопористого оксида алюминия в γ-форме с мономодальным распределением пор по размерам, средний диаметр которых составляет 9,0-11,0 нм.

Задача решается способом получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, при этом осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58-66%, полученной смешением (66-70)% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке (30-34)% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый оксид алюминия, характеризующегося мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м2/г, объемом пор - (0,82÷1,09) см3/г и средним диаметром пор - 9,2÷11 нм.

Отличительные признаки предлагаемого способа получения гамма-оксида алюминия:

1. Способ получения, включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1 и температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч.

2. Способ получения, включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66% с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см3/г, средний диаметр которых составляет 9,2-11 нм.

Основные характеристики получаемого гамма-оксида алюминия определяют:

- фазовый состав на дифрактометре HZG-4C (Германия) в монохроматическом излучении CuKα (λ=1,5418 Å) в интервале углов от 10 до 75° (по 2θ) с шагом сканирования τ=0,05 градуса 2θ и временем накопления 5 с в каждой точке. Фазовый анализ проводят по программе PCW.2.4 путем сопоставления экспериментальных дифрактограмм и теоретически рассчитанных на основе известных структур, взятых из базы структурных данных ICDS с учетом профиля дифракционных линий;

- текстурные характеристики (величину Sуд, объем пор - Vп, средний диаметр пор - dпop и распределение пор по размерам) методом низкотемпературной (-196°С) адсорбции азота на установке ASAP-2400 Micromeritics; предварительно образцы тренируют в вакууме при 150°С.

Получение гамма-оксида алюминия включает осаждение раствора азотнокислого алюминия водным раствором аммиака при постоянном рН, равным 7±0,1, температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч, после чего осадок отфильтровывают, промывают дистиллированной водой. Одну часть влажного осадка разбавляют дистиллированной водой для приготовления суспензии с концентрацией (120±5)г Al2O3/л, которую подают на распылительной сушилку, получают порошок с размерами частиц, не превышающих 15-20 мкм, который смешивают с двумя другими частями влажного осадка с образованием пасты с влажностью 58÷66%, которую формуют в виде гранул с последующей их сушкой на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают в токе осушенного воздуха при 550-600°С в течение 4-х ч.

Сущность предлагаемого изобретения иллюстрируется следующими примерами, показывающими изменение фазового состава и текстурных характеристик получаемого оксида алюминия в зависимости от условий осаждения и формования.

Основные характеристики гамма-оксида алюминия приведены в таблице и на Фиг.1-8.

Пример 1.

В реактор, помещенный в термостат, заливают 500 мл дистиллированной воды, устанавливают рН-метр и включают обогрев реактора и мешалку; при достижении температуры 70°С в реактор дозируют раствор азотнокислого алюминия, содержащего 100 г Al2O3, со скоростью 25 мл/мин, одновременно добавляя 900 мл водного раствора NH4OH для поддержания рН осаждения, равным 7,0±0,1. Полученную суспензию выдерживают при указанных условиях в течение 3 ч, после чего фильтруют и промывают дистиллированной водой. Одну третью часть отмытого влажного осадка разбавляют дистиллированной водой до концентрации (120±5)г Al2O3/л и полученную суспензию подают на распылительную сушилку для получения порошка с размером частиц не более 15-20 мкм. Высушенный порошок гидроксида алюминия смешивают с остальными 2/3 частями влажного осадка с образованием пасты с влажностью 62,3%, которую формуют в виде гранул, сушат на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают при 550°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.1.

Пример 2.

Аналогичен примеру 1. Отличие состоит в том, что влажность формуемой пасты составляет 60,3%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.4.

Пример 3.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 4 ч. Влажность формуемой пасты составляет 59,9%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.2.

Пример 4.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 5 ч. Влажность формуемой пасты составляет 65,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.3.

Пример 5.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 63,0%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.5.

Пример 6.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 58,1%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.6.

Пример 7.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 7,0±0,1 и температуре 90°С. Влажность формуемой пасты составляет 59,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.7.

Пример 8.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 9,0 и температуре 70°С. Влажность формуемой пасты составляет 61,5%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.8.

Показатели γ-оксида алюминия по всем примерам приведены в таблице и на Фиг.1-8.

Таблица
Основные показатели гамма-оксида алюминия
№№ при мера Условия получения рН-Т-τ (ч) Влажность формуемой пасты, % Tпрок, °C Фазовый состав Текстурные характеристики
S,м2 Vп,см3 dпор, нм Распределение пор по размерам
1 7-70-3 62,3 550 γ-Al2O3 340 0,87 10,1 Мономодальное
2 7-70-3 60,3 600 γ-Al2O3 345 1,09 11,0 Мономодальное
3 7-70-4 59,9 600 γ-Al2O3 355 0,94 10,6 Мономодальное
4 7-70-5 65,7 550 γ-Al2O3 370 1,01 11,0 Мономодальное
5 7-70-5 63,0 550 γ-Al2O3 350 0,84 9,5 Мономодальное
6 7-70-5 58,1 550 γ-Al2O3 355 0,82 9,2 Мономодальное
7 7-90-5 59,7 550 γ-Al2O3 298 0,45 6,1 Мономодальное
8 9-70-5 61,5 550 γ-Al2O3 270 0,44 6,5 Мономодальное

Распределение пор по размерам по всем примерам приведены на Фиг.1-8.

Фиг.1. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 62,3%, прокаленного при 550°С.

Фиг.2. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 60,3%, прокаленного при 600°С.

Фиг.3. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-4, при влажности формуемой пасты - 59,9%, прокаленного при 600°С.

Фиг.4. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 65,7%, прокаленного при 550°С.

Фиг.5. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 63,0%, прокаленного при 550°С.

Фиг.6. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 58,1%, прокаленного при 550°С.

Фиг.7. Распределение пор по размерам для γ-Al2O3, полученного при 7-90-5, при влажности формуемой пасты - 59,7%, прокаленного при 550°С.

Фиг.8. Распределение пор по размерам для γ-Al2O3, полученного при 9-70-5, при влажности формуемой пасты - 61,5%, прокаленного при 550°С.

Как видно из приведенных примеров, таблицы и Фиг., предлагаемый нитратно-аммиачный способ осаждения при рН 7, температуре 70°С и времени выдержки суспензии при указанных условиях в течение 3-5 ч с последующим формованием гранул при влажности формуемой пасты 58÷66% позволяет решать задачу получения широкопористого оксида алюминия в γ-форме с величиной удельной поверхности, равной (340-370) м2/г, объемом пор - (0,82-1,09) см3/г и средним диаметром пор - 9,2-11 нм, при этом распределение по размерам является мономодальным.

Повышение температуры осаждения до 90°С или повышение рН осаждения до 9 при одном и том же времени выдержки суспензии (τ=5 ч) приводит к значительному снижению величины удельной поверхности, объема пор и среднего диаметра пор при сохранении мономодального распределения пор по размерам.

Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 366.
20.10.2014
№216.012.fe29

Морская технологическая платформа

Изобретение относится к области судостроения, а именно к морским технологическим платформам различного назначения и может быть использовано при создании плавучих, погружных и стационарных морских платформ для освоения месторождений шельфа. Морская технологическая платформа содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002530921
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.008b

Электромеханическая трансмиссия трактора

Изобретение относится к электромеханической силовой передаче трактора, предпочтительно, с гусеничными движителями. Электромеханическая трансмиссия содержит двигатель внутреннего сгорания, мотор-генератор, электрически связанный с оппозитно расположенными относительно продольной оси трактора...
Тип: Изобретение
Номер охранного документа: 0002531531
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.08a2

Способ определения режущей способности абразивно-алмазного инструмента с однослойным алмазно-гальваническим покрытием

Изобретение относится к области абразивной обработки и может быть использовано для определения режущей способности абразивно-алмазного инструмента с однослойным алмазно-гальваническим покрытием (АГП). Инструмент устанавливают на плоскости стола электронного микроскопа и определяют оптическим...
Тип: Изобретение
Номер охранного документа: 0002533611
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b12

Композиционный полимерный материал для вибропоглощающих покрытий и способ их монтажа

Изобретение относится к наполненным композиционным полимерным материалам, предназначенным для напольных вибропоглощающих покрытий и может быть использовано в судостроении, гражданском и промышленном строительстве и других отраслях. Композиционный полимерный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002534242
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f7f

Устройство для проведения гидродинамических испытаний в опытовом бассейне моделей быстроходных судов с воздушной каверной

Изобретение относится к области судостроения, более конкретно - к экспериментальной гидромеханике, и касается вопросов проведения экспериментальных исследований в опытовых бассейнах моделей быстроходных судов с воздушными кавернами на днище. Предложена конструкция корпуса модели судна с...
Тип: Изобретение
Номер охранного документа: 0002535384
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1329

Способ утоньшения фоточувствительного слоя матричного фотоприемника

Использование: для изготовления полупроводниковых фотоприемников и для создания многоэлементных фотоприемников различного назначения. Сущность изобретения заключается в том, что фоточувствительный элемент с «толстой» базовой областью утоньшается до нужной толщины (10-15 мкм) прецизионными...
Тип: Изобретение
Номер охранного документа: 0002536328
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1723

Легконагруженный водометный движитель

Изобретение относится к области судостроения и касается разработки легконагруженных водометных движителей. Легконагруженный водометный движитель состоит из рабочего колеса, спрямляющего аппарата, водовода и центрального тела, выступающего вперед и назад из водовода. Водовод представляет собой...
Тип: Изобретение
Номер охранного документа: 0002537351
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1827

Установка очистки хозяйственно-бытовых сточных вод

Изобретение может быть использовано для глубокой очистки бытовых и производственных сточных вод на малогабаритных блокированных установках, в том числе расположенных на нефтегазодобывающих платформах, терминалах и судах. Установка очистки хозяйственно-бытовых сточных вод содержит гидравлически...
Тип: Изобретение
Номер охранного документа: 0002537611
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1858

Способ регулирования двигателя внутреннего сгорания

Изобретение относится к двигателям внутреннего сгорания с газотурбинным наддувом. Техническим результатом является повышение эффективности работы и улучшение топливной экономичности двигателя, снабженного турбокомпрессором, сокращение выбросов оксидов азота. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002537660
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1967

Трехосный автомобиль с комбинированной энергетической установкой

Изобретение относится к транспортному машиностроению. Трехосный автомобиль с комбинированной энергетической установкой содержит тепловой двигатель, связанный с колесами среднего моста, обратимые электрические машины, трансмиссию и бортовую управляющую систему. Автомобиль выполнен с приводом...
Тип: Изобретение
Номер охранного документа: 0002537931
Дата охранного документа: 10.01.2015
Показаны записи 91-100 из 272.
20.07.2014
№216.012.de70

Устройство для преобразования вращательного движения в поступательное

Изобретение относится к машиностроению и может быть использовано в качестве механической винтовой передачи для преобразования вращательного движения в поступательное. Устройство для преобразования вращательного движения в поступательное состоит из винта (1) и узла, совершающего поступательное...
Тип: Изобретение
Номер охранного документа: 0002522730
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de90

Способ определения термостойкости изделий из сверхтвердой керамики на основе кубического нитрида бора

Использование: для определения термостойкости изделий из сверхтвердой керамики на основе кубического нитрида бора. Сущность изобретения заключается в том, что осуществляют термообработку испытуемых образцов в вакууме или в инертном газе с последующим анализом, при котором определяют степень...
Тип: Изобретение
Номер охранного документа: 0002522762
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.deb8

Способ изготовления микроконтактов матричных фотоприемников

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. В способе изготовления микроконтактов матричных фотоприемников согласно изобретению формируют на пластине с матрицами БИС или фотодиодными матрицами...
Тип: Изобретение
Номер охранного документа: 0002522802
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dee4

Лекарственный препарат и способ улучшения реологических свойств мокроты и ингаляционное применение такого препарата

Группа изобретений относится к медицине и может быть использована для улучшения реологических свойств мокроты и подавления образования бактериальных биопленок в бронхах при лечении муковисцидоза. Для этого применяют рекомбинантную дезоксирибонуклеазу-1 человека, ковалентно связанную с...
Тип: Изобретение
Номер охранного документа: 0002522846
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.def3

Оптоэлектронное реле

Изобретение относится к импульсной технике и может быть использовано в коммутационных устройствах с гальванической развязкой. Техническим результатом является возможность ограничения тока в оптоэлектронном реле и повышение его надежности. Оптоэлектронное реле состоит из первого светодиода и...
Тип: Изобретение
Номер охранного документа: 0002522861
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.defd

Способ обработки фасонных поверхностей точением

Способ включает предварительное позиционирование резца и фиксирование его в резцедержателе, затем перемещение центра поворота резца по траектории, сформированной перпендикулярами равной длины, спроецированными на касательную к обрабатываемой поверхности в точке нахождения вершины резца. Для...
Тип: Изобретение
Номер охранного документа: 0002522871
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df24

Автоматическая нрлс с увеличенным необслуживаемым периодом автономной работы

Изобретение может быть использовано для применения на судах различного тоннажа. Достигаемый технический результат - обеспечение безопасности плавания в особо сложных навигационных условиях с автоматическим решением навигационных задач. Сущность изобретения: автоматическая навигационная...
Тип: Изобретение
Номер охранного документа: 0002522910
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0c8

Огнестойкий декоративно-отделочный материал и способ его получения

Изобретение относится к разработке огнестойкого декоративно-отделочного материала - искусственной кожи, полученной коагуляцией раствора на основе полиуретановой композиции. Декоративно-отделочный материал содержит тканый слой, предварительно пропитанный водной силиконовой эмульсией и высушенный...
Тип: Изобретение
Номер охранного документа: 0002523330
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e130

Способ работы преобразователя постоянного напряжения в переменное и устройство для выполнения способа

Изобретение относится к области электротехники и может быть использовано для преобразования постоянного напряжения в переменное при разработке различных устройств автоматики. Техническим результатом является повышение функциональной надежности преобразователя за счет упрощения его схемы для...
Тип: Изобретение
Номер охранного документа: 0002523434
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e26e

Способ обнаружения скрытых дефектов матричных бис считывания

Изобретение относится к тестированию матричных БИС считывания и может быть использовано для определения координат скрытых дефектов типа утечек сток-исток, которые невозможно обнаружить до стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов. На кремниевой пластине с годными...
Тип: Изобретение
Номер охранного документа: 0002523752
Дата охранного документа: 20.07.2014
+ добавить свой РИД