×
10.05.2013
216.012.3d46

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. Способ включает телеметрические измерения (напр., с частотой опроса 0,5 с в принятом промежутке времени) таких параметров СТР, как суммарный расход теплоносителя в жидкостном тракте и температуры в его точках. Тракт включает в себя параллельные ветви, на выходах которых имеются датчики температуры. Третий датчик температуры установлен на общем выходе. Суммарный расход теплоносителя обеспечивается электронасосным агрегатом. При изготовлении СТР покрывают теплоизоляцией участки тракта между датчиками и определяют объем теплоносителя между точками установки этих датчиков и точкой смешения двух потоков теплоносителя из параллельных ветвей. По данным измерений действительные значения расходов теплоносителя в параллельных ветвях определяют по формулам, учитывающим транспортные запаздывания при измерениях датчиками температур. Техническим результатом изобретения является повышение точности определения расходов теплоносителя в параллельных ветвях и тем самым достоверности диагностики и прогноза величин коэффициентов полезного действия приборов, установленных на сотовых панелях СТР с параллельными ветвями. 2 ил.
Основные результаты: Способ контроля работы системы терморегулирования космического аппарата, включающий в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t; t) и на общем выходе из них после точки смешения (t), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, отличающийся тем, что после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, определяют по формулам: где - расход теплоносителя в жидкостном тракте первой ветви, см/с; - суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей в течение принятого промежутка времени, см/с; - температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t в момент времени °C;τ - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;V - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t, см; - расчетная величина расхода теплоносителя через первую параллельную ветвь, равная в первом приближении половине величины суммарного расхода , а в последующих приближениях равная величине, определенной в предыдущем приближении, см/с; - температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t в момент времени °C;V - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t, см; - температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t в момент времени , °С;V - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t, см; - расход теплоносителя в жидкостном тракте второй ветви, см/с.

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников.

В настоящее время СТР мощных телекоммуникационных спутников (холодопроизводительностыо, например, ≈ 10 кВт) с целью снижения ее массы выполняют с жидкостными трактами с параллельными ветвями (в этом случае в СТР применяют менее мощный электронасосный агрегат (ЭНА) с небольшой массой и жидкостный тракт СТР выполняют с внутренним диаметром, меньшим, чем при последовательном соединении, что также снижает объем и, следовательно, массу теплоносителя в СТР).

В общем случае при наземных испытаниях (в т.ч. при контроле качества изготовления) и орбитальном функционировании контроль работы СТР (контроль нормального функционирования СТР) осуществляется телеметрическими измерениями температур различных участков жидкостного тракта СТР, определением суммарного расхода теплоносителя в жидкостном тракте на основе данных телеметрических измерений, которые при нормальной работе СТР должны удовлетворять требуемым (заданным) нормам.

В случае наличия в жидкостном тракте параллельных ветвей также необходимо по данным телеметрических измерений подтверждать, что величины расходов теплоносителя в параллельных ветвях удовлетворяют требуемым нормам: как правило, жидкостные тракты параллельных ветвей должны быть выполнены таким образом, чтобы в каждой параллельной ветви расход теплоносителя был бы близок к половине суммарного расхода теплоносителя в жидкостном тракте (равной, например, 45 см3/с). В связи с тем, что знание высокоточной величины расхода теплоносителя в параллельной ветви важно для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на этой ветви, авторами разработано новое техническое решение, обеспечивающее с высокой точностью (с погрешностью до 5%) определять величины расходов теплоносителя в параллельных ветвях по сравнению с известным способом с погрешностью до 20%.

Известен способ определения величины расхода теплоносителя на основе патента Российской Федерации №2164884 [1], по которому (см. фиг.1, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви (1) и (2), которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и они являются частью жидкостного трата 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 9, 10, 11 - датчики температуры) для данного момента времени по данным телеметрии измеряют:

- температуры жидкостного тракта t1, t2, t3 на каждом выходе параллельной ветви и на общем их выходе;

- определяют суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый ЭНА 1.

И на основе данных этих измерений для вышеуказанного момента времени в настоящее время оценивают величины расходов теплоносителя в параллельных ветвях для того же вышеуказанного момента, считая, что они равны половине величины суммарного расхода в жидкостном тракте (т.к. при разработке параллельных ветвей их гидравлические сопротивления расчетно выполняют близкими друг к другу значениями).

Анализ, проведенный авторами, опыта применения вышеуказанного способа показал, что ввиду того что при определении величин расходов через параллельные ветви не учитываются влияния транспортных запаздываний от точки смешения двух параллельных потоков до места установки датчиков температуры жидкостного тракта на выходе каждой параллельной ветви и на общем выходе, а также в случае отсутствия теплоизоляции на этих участках жидкостного тракта, погрешность в определении вышеуказанных величин доходит до 20% от действительной величины расхода теплоносителя через ветвь.

Таким образом, существенным недостатком известного способа [1] контроля работы СТР КА является повышенная погрешность определения величины расхода теплоносителя через каждую параллельную ветвь.

Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе контроля работы СТР КА, включающем в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t1; t2) и на общем выходе из них после точки смешения (t3), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях определяют в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, по формулам:

,

где - расход теплоносителя в жидкостном тракте первой ветви, см3/с;

- суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей, в течение принятого промежутка времени, см3/с;

- температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t3 в момент времени , °С;

τ0 - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;

Vbd - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t3, см3;

- расчетная величина расхода теплоносителя через первую параллельную ветвь, равная при первом приближении половине величины суммарного расхода , а при последующих приближениях равная величине, определенной при предыдущем приближении, см3/с;

- температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t2 в момент времени , °С;

Vbc - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t2, см3;

- температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t1 в момент времени , °С;

Vab - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t1, см3;

- расход теплоносителя в жидкостном тракте второй ветви, см3/с,

что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе контроля работы СТР КА.

На фиг.2 изображена принципиальная схема реализации предложенного авторами технического решения, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви, которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и являются частью жидкостного тракта 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 1.1 -датчик суммарного расхода теплоносителя; 9, 10, 11 - датчики температуры; b - точка смешения двух потоков теплоносителя, идущих из первой (1) и второй (2) ветвей жидкостного тракта СТР; а, с, d - точки измерения температур жидкостного тракта датчиками температур t1, t2, t3, установленных на выходах первой и второй ветвей и на общем выходе их.

Предложенный способ контроля работы СТР КА включает в себя следующую последовательность выполняемых операций:

1. Осуществляют сборку КА, в том числе сборку жидкостного тракта СТР 6 на конструкции КА; на жидкостном тракте на выходах 4.3 и 5.3 из параллельных ветвей, встроенных в сотовые панели 4 и 5, и на жидкостном тракте после точки смешения двух потоков теплоносителя устанавливают датчики температуры t1, t2, t3.

2. Определяют объемы теплоносителя в жидкостных трактах участков ab, bc, bd.

3. Участки жидкостного тракта ab, bc, bd, содержащие датчики температуры t1, t2, t3, покрывают теплоизоляцией (чтобы снизить утечки тепла в космическое пространство: это обеспечивает повышение точности измерения расходов теплоносителя в параллельных ветвях).

4. При наземных испытаниях и в условиях орбитального функционирования КА включают в работу СТР (включают в работу ЭНА1), затем включают в работу приборы КА и при стабилизированном режиме работы приборов КА периодически контролируют работу СТР, используя показания телеметрических датчиков суммарного расхода теплоносителя 1.1 и температуры жидкостного тракта 9, 10, 11 (теплоносителя, циркулирующего в нем), для чего в некотором промежутке времени (например, в течение 2-3 минут) непрерывно (с частотой опроса, например, 0,5 с) фиксируют телеметрические данные по величинам суммарного расхода теплоносителя - , температур теплоносителя на выходах параллельных ветвей - t1, t2 и после точки смешения - t3.

5. Выбирают момент времени в середине промежутка времени (τ0), указанного в п.4.

6. Определяют величины расходов теплоносителя в параллельных ветвях для момента времени по п.5 (τ0) по формулам:

.

7. Сравнивают измеренные телеметрические данные t1, t2, t3, с допустимыми нормами. Затем, если указанные параметры удовлетворяют требуемым нормам, сравнивают полученные в п.6 данные по расходам теплоносителя в параллельных ветвях: они должны отличаться от половины измеренного суммарного расхода не более, чем |±5%|.

8. Если определенные данные по величинам расхода теплоносителя через параллельные ветви не удовлетворяют вышеуказанному требованию, выполняют второе приближение, взяв при осуществлении повторных расчетов по п.6 за расчетную величину

9. Выполняют операцию п.7.

10. Если результаты операций п.7 и п.9 положительны, то это означает, что СТР функционирует нормально.

Таким образом, как следует из вышеизложенного, в результате реализации предложенного авторами технического решения при контроле работы СТР КА, повышается точность определения величин расходов теплоносителя в параллельных ветвях жидкостного тракта СТР, необходимая для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на сотовых панелях с параллельными ветвями, и, следовательно, тем самым достигается цель изобретения.

Способ контроля работы системы терморегулирования космического аппарата, включающий в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t; t) и на общем выходе из них после точки смешения (t), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, отличающийся тем, что после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, определяют по формулам: где - расход теплоносителя в жидкостном тракте первой ветви, см/с; - суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей в течение принятого промежутка времени, см/с; - температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t в момент времени °C;τ - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;V - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t, см; - расчетная величина расхода теплоносителя через первую параллельную ветвь, равная в первом приближении половине величины суммарного расхода , а в последующих приближениях равная величине, определенной в предыдущем приближении, см/с; - температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t в момент времени °C;V - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t, см; - температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t в момент времени , °С;V - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t, см; - расход теплоносителя в жидкостном тракте второй ветви, см/с.
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 121-126 из 126.
29.03.2019
№219.016.f14d

Устройство для измерения угловых перемещений

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения за счет уменьшения погрешности, вызванной смещением оси вращения преобразования устройства для измерения угловых перемещений, снижение требований к точности исполнения и жесткости механических...
Тип: Изобретение
Номер охранного документа: 0002397440
Дата охранного документа: 20.08.2010
19.04.2019
№219.017.33d9

Силовой ключ на мдп-транзисторе

Изобретение относится к импульсной технике и может быть применено в различных коммутационных устройствах. Технический результат заключается в повышении надежности работы силового ключа. Для этого предложен силовой ключ на МДП-транзисторе, содержащий трансформатор, конец вторичной обмотки...
Тип: Изобретение
Номер охранного документа: 0002469474
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f65

Способ формирования испытательных тестов электронных устройств

Изобретение относится к способам испытаний электронных устройств различного назначения путем использования испытательных тестов (наборы испытательных воздействий и соответствующих им допустимых отклонений контролируемых параметров устройств), сформированных по результатам математического...
Тип: Изобретение
Номер охранного документа: 0002469372
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
05.07.2019
№219.017.a6b1

Способ передачи цифровой информации через параллельную магистраль

Настоящее изобретение относится к вычислительной технике и автоматике. Техническим результатом является повышение отказоустойчивости. Способ позволяет исправлять информацию на параллельной магистрали путем тройного повторения (записи) информации, со смещением информации на число разрядов,...
Тип: Изобретение
Номер охранного документа: 0002465632
Дата охранного документа: 27.10.2012
10.07.2019
№219.017.b102

Способ контроля герметичности изделий в вакуумной камере

Изобретение относится к области испытательной техники и предназначено для применения в космической отрасли при испытании космических аппаратов (КА), а также может быть использовано в атомной, химической промышленности, в различных отраслях машиностроения. Изобретение направлено на повышение...
Тип: Изобретение
Номер охранного документа: 0002444713
Дата охранного документа: 10.03.2012
Показаны записи 121-130 из 142.
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
11.03.2019
№219.016.d80d

Сотовая панель

Изобретение относится к конструкции систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников с длительным сроком эксплуатации. Панель содержит два независимых встроенных параллельных тракта теплоносителя, приклеенных своими полками к параллельно...
Тип: Изобретение
Номер охранного документа: 0002346860
Дата охранного документа: 20.02.2009
11.03.2019
№219.016.d95f

Способ компоновки космического аппарата

Изобретение относится преимущественно к телекоммуникационным спутникам с мощностью энергопотребления на уровне 1-2,5 кВт. Согласно изобретению космический аппарат (спутник) выполняют из двух модулей: полезной нагрузки и служебных систем. Приборы устанавливают на внутренних обшивках их...
Тип: Изобретение
Номер охранного документа: 0002353553
Дата охранного документа: 27.04.2009
29.03.2019
№219.016.f118

Радиопрозрачное терморегулирующее покрытие

Радиопрозрачное терморегулирующее покрытие (РТРП) предназначено преимущественно для терморегулирования и электростатической защиты в виде экранов или в виде покрытия, приклеенного к поверхности элементов конструкции космических аппаратов. Покрытие содержит внешний электропроводный...
Тип: Изобретение
Номер охранного документа: 0002343509
Дата охранного документа: 10.01.2009
09.05.2019
№219.017.4c3b

Мембранный компрессор

Устройство предназначено для использования в области машиностроения, преимущественно для перекачивания дорогих и редких газов высокой чистоты с одновременным повышением их давления. Мембранный компрессор состоит из корпуса и крышки, от которых отходят трубки входа газа низкого давления, выхода...
Тип: Изобретение
Номер охранного документа: 0002398132
Дата охранного документа: 27.08.2010
07.06.2019
№219.017.7567

Способ диагностики работоспособности системы терморегулирования космического аппарата

Изобретение относится к области машиностроения, в частности к системе терморегулирования космического аппарата. Способ диагностики работоспособности системы терморегулирования космического аппарата включает периодический контроль работы системы в условиях эксплуатации. Проводятся периодические...
Тип: Изобретение
Номер охранного документа: 0002690827
Дата охранного документа: 05.06.2019
09.06.2019
№219.017.7efa

Подложка панели солнечной батареи и способ ее изготовления

Изобретение относится к солнечным батареям, служащим для преобразования солнечной энергии в электрическую. Подложка панели солнечной батареи состоит из сетчатого материала, изготовленного из струн, пропитанных связующим составом, согласно изобретению струны выполнены из арамидного шнура. Способ...
Тип: Изобретение
Номер охранного документа: 0002449226
Дата охранного документа: 27.04.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
10.07.2019
№219.017.aeaf

Траверса для переносов и проведения монтажно-стыковочных работ крупногабаритных изделий

Изобретение относится к подъемно-перегрузочным устройствам для проведения операций по переносу и монтажно-стыковочным работам. Траверса содержит несущую балку с установленной на ней серьгой и стропы, снабженные такелажными узлами и регулируемыми винтовыми вставками. Стропы имеют общие точки...
Тип: Изобретение
Номер охранного документа: 0002323870
Дата охранного документа: 10.05.2008
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
+ добавить свой РИД