×
27.04.2013
216.012.3ab6

Результат интеллектуальной деятельности: СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР

Вид РИД

Изобретение

№ охранного документа
0002480591
Дата охранного документа
27.04.2013
Аннотация: Термодинамический контур содержит три теплообменника (W1, W2, W3), сепаратор (4), турбину (2), объединитель (5) и обводной трубопровод (31). Первый теплообменник (W1) для выработки первого нагретого или частично испаренного потока (15) рабочей среды путем теплопередачи от разреженного потока (12) рабочей среды. Второй теплообменник (W2) для выработки второго потока (18) рабочей среды посредством частичного испарения или дополнительного испарения первого потока (15) рабочей среды теплом, которое передается от внешнего источника (20) тепла. Третий теплообменник (W3) для полной конденсации разреженного потока (12а) рабочей среды. Сепаратор (4) для отделения жидкой фазы (19) от парообразной фазы (10) второго потока (18) рабочей среды. Турбина (2) для разрежения парообразной фазы (10), преобразования ее энергии в полезную форму и выработки разреженной парообразной фазы (11). Объединитель (5) для выработки разреженного потока (12) рабочей среды путем объединения жидкой фазы (19) и разреженной парообразной фазы (11). Обводной трубопровод (31) для обхода парообразной фазой (10) турбины (2) и первого теплообменника (W1). Трубопровод (31) ответвляется от трубопровода (32) между сепаратором (4) и турбиной (2) и входит в трубопровод (30) между первым теплообменником (W1) и третьим теплообменником (W3). Предотвращаются опасные пульсации давления в контуре во время запуска. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к способу функционирования термодинамического контура согласно родовому понятию пункта 1 формулы изобретения, а также к термодинамическому контуру согласно родовому понятию пункта 7 формулы изобретения, подобный контур описан, например, в ЕР 1 613 841 В1.

Тепловые электростанции используют термодинамические круговые [циклические, замкнутые] процессы для преобразования тепла в механическую или электрическую энергию. Обычные тепловые электростанции вырабатывают тепло за счет сжигания топлива, прежде всего ископаемых энергоносителей: угля, нефти и газа. Циклические процессы при этом функционируют на основе классического цикла Ранкина с водой в качестве рабочей среды. Ее высокая точка кипения делает воду, во всяком случае, прежде всего при использовании тепловых источников с температурами от 100 до 200°С, например геотермических жидкостей или отходящего тепла из процессов горения, непривлекательной ввиду недостаточной экономичности.

Для тепловых источников с такой низкой температурой в последние годы разработаны самые разнообразные технологии, которые позволяют преобразовывать их тепло с хорошим КПД в механическую или электрическую энергию. Наряду с циклом Ранкина с органической рабочей средой (органический цикл Ранкина - ORC), прежде всего, так называемый цикл Калина (Kalina cycle) характеризуется заметно лучшими КПД по сравнению с классическим циклом Ранкина.

На основе цикла Калина разработаны различные контуры для различных применений. Эти контуры применяют в качестве рабочей среды вместо воды двухкомпонентную смесь (например, аммиак и воду), причем используется неизотермический процесс кипения и конденсации смеси, чтобы повысить КПД контура в сравнении с циклом Ранкина.

Подобный цикл Калина, в особенности подходящий для температур от 100 до 200°С, в частности от 100 до 140°С, известен из ЕР 1 613 841 В1. Другой подобный известный контур известен из ЕР 1 070 830 А1.

Из традиционных воздушно-паровых контуров уже известно, для запуска подобного контура, выработанный пар сначала нужно проводить мимо турбины до тех пор, пока в контуре не будет сформировано достаточное для работы турбины давление. Однако если этот принцип применяется в вышеупомянутом цикле Калина, то во время запуска контура это может привести к пульсациям давления в контуре, которые могут стать настолько большими, что должно осуществляться аварийное отключение контура.

Поэтому задачей настоящего изобретения является создание способа функционирования контура согласно родовому понятию пункта 1 формулы изобретения, при котором при запуске могут быть предотвращены подобные пульсации. Кроме того, задачей предложенного изобретения является создание контура, в частности, для выполнения соответствующего изобретению способа, с помощью которого могут быть предотвращены подобные пульсации.

Решение задачи, направленной на способ, является предметом пункта 1 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 2-6. Решение задачи, направленной на термодинамический контур, является предметом пункта 7 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 8-12.

При этом изобретение исходит из знания того, что при запуске к первому теплообменнику подводится очень много энергии, когда разделенные сепаратором жидкая фаза и парообразная фаза сводятся вместе перед первым теплообменником. Это приводит к тому, что их полная энергия направляется в первый теплообменник и вследствие теплопередачи на его первичной стороне обуславливается сильное испарение жидкой рабочей среды. За счет этого происходят сильные изменения соотношений давления от входа в первый теплообменник до выхода из второго теплообменника, в частности, если давление рабочей среды на выходе из второго теплообменника или за сепаратором измеряется и используется в качестве регулирующей величины для контура. На основе изменяющихся соотношений давления и осуществляемых вместе с этим регулирующих воздействий могут вызываться процессы испарения, которые также могут неожиданным образом совпадать и тем самым формируют пульсации давления в контуре.

За счет направления отделенной парообразной фазы как мимо устройства создания разрежения, так и мимо первого теплообменника, предотвращается слишком высокий ввод тепла в первый теплообменник и тем самым слишком высокая теплопередача к жидкой рабочей среде. За счет этого можно предотвратить слишком сильное испарение жидкой рабочей среды в первом теплообменнике и тем самым надежным образом препятствовать пульсациям.

Предпочтительным образом, при охлаждаемом потоке рабочей среды жидкая фаза и парообразная фаза отделяются одна от другой и затем снова объединяются. За счет этого рабочая среда перед ее подачей в третий теплообменник гомогенизируется, и тем самым КПД контура улучшается.

Соответствующий изобретению контур характеризуется обводным трубопроводом, который ответвляется от трубопровода между сепаратором и устройством создания разрежения и после первого теплообменника входит в трубопровод между первым теплообменником и третьим теплообменником.

Преимущества и соображения, упомянутые для способа, соответствующего изобретению, также справедливы и для контура, соответствующего изобретению.

Предпочтительным образом, для гомогенизации рабочей среды перед ее подачей к третьему теплообменнику и тем самым для улучшения КПД контура, в трубопровод между первым теплообменником и третьим теплообменником между входом обводного трубопровода и третьим теплообменником включен дополнительный сепаратор для разделения жидкой фазы от парообразной фазы и смеситель для смешивания разделенной дополнительным сепаратором жидкой и парообразной фазы.

Согласно варианту выполнения изобретения в качестве рабочего средства применяется многокомпонентная смесь. В случае многокомпонентной смеси речь идет предпочтительно о двухкомпонентной смеси, в частности смеси аммиака с водой. На основе неизотермического испарения и конденсации такой смеси может, в частности, достигаться особенно высокий КПД контура.

Особенно экологически чистое получение энергии достигается за счет применения геотермической жидкости, в частности термальных вод, из геотермального источника в качестве источника тепла. Но в качестве источника тепла также могут применяться отработавшие газы (дымовые газы) газо- и/или паротурбинных установок или тепло, вырабатываемое в промышленных производственных процессах (например, при производстве стали).

Высокий КПД контура может при этом достигаться и в том случае, если источник тепла имеет температуру от 100°С до 200°С, в частности от 100°С до 140°С.

Изобретение и другие предпочтительные варианты выполнения изобретения согласно признакам зависимых пунктов далее поясняются на примере выполнения со ссылками на фиг.1, на которой показан соответствующий изобретению термодинамический контур в упрощенном схематичном представлении.

Показанный на чертеже термодинамический контур 1 содержит первый теплообменник (подогреватель) W1, второй теплообменник (испаритель) W2 и третий теплообменник (конденсатор) W3.

Второй теплообменник W2 на первичной стороне находится в контакте с внешним источником тепла, в показанном примере выполнения он на первичной стороне обтекается горячей термальной водой 20 не изображенного более подробно геотермального источника, и на вторичной стороне соединен как с первым теплообменником W1, так и с сепаратором 4. Сепаратор 4 служит для отделения парообразной фазы от жидкой фазы частично испаренной рабочей среды. Выход со стороны пара сепаратора 4 связан с турбиной 2 в качестве устройства создания разрежения. Турбина 2 со стороны выхода соединена с объединителем в форме смесителя 5. Смеситель 5 дополнительно соединен с выходом жидкости сепаратора 4. Со стороны выхода смеситель 5 соединен с вторичной стороной первого теплообменника W1. Последний на вторичной стороне вновь через трубопровод 30 соединен с первичной стороной третьего теплообменника W3 (конденсатора), обтекаемого с вторичной стороны охлаждающей водой 25.

Обводной трубопровод 31 служит для обхода турбины 2 и первого теплообменника W1 для парообразной фазы, отделенной в сепараторе 4. Обводной трубопровод 31 ответвляется от трубопровода 32 между сепаратором 4 и турбиной 2 и входит после первого теплообменника W1 в трубопровод 30 между первым теплообменником W1 и третьим теплообменником W3. Вентили 33, 34 служат для управления и/или регулирования подачи парообразной фазы 10 в обводной трубопровод 31 или в турбину 2.

В трубопроводе 30 между первым теплообменником W1 и третьим теплообменником W3 между вводом 35 обводного трубопровода 31 и третьим теплообменником W3 включен дополнительный сепаратор 40 для отделения жидкой фазы от парообразной фазы и дополнительный смеситель 41 для смешивания отделенной сепаратором 40 жидкой фазы с отделенной парообразной фазой.

Третий теплообменник (конденсатор) W3 на своем выходе первичной стороны, в необходимом случае через не изображенный подробно бак конденсата, через насос 3 соединен с первичной стороной первого теплообменника W1. Первичная сторона первого теплообменника W1 вновь соединена с вторичной стороной уже упомянутого второго теплообменника W2.

В качестве рабочей среды в контуре 1 применяется двухкомпонентная смесь из воды и аммиака, которая, таким образом, имеет неизотермическое испарение и конденсацию.

При нормальном режиме работы контура 1 рабочая среда после третьего теплообменника (конденсатора) W3 имеется в жидком состоянии как жидкий поток 13 рабочей среды. С помощью насоса жидкий поток 13 рабочей среды накачивается на повышенное давление и формирует нагруженный давлением жидкий поток 14 рабочей среды. При этом, естественно, также возможно, что жидкий поток 13 рабочей среды после третьего теплообменника (конденсатора) W3 подводится сначала к баку конденсата, там накапливается промежуточным образом и оттуда с помощью насоса 3 откачивается и приводится на повышенное давление.

Нагруженный давлением жидкий поток 14 рабочей среды подается к первичной стороне первого теплообменника W1 и нагревается и даже частично испаряется за счет частичной конденсации проводимого с вторичной стороны через первый теплообменник W1 разреженного потока 12 рабочей среды, так что на первичной стороне после первого теплообменника W1 имеется первый частично испаренный поток 15 рабочей среды, а с вторичной стороны - частично сконденсированный разреженный поток 12а рабочей среды. Доля пара в первом частично испаренном потоке 15 рабочей среды составляет, например, 15%.

Первый частично испаренный поток 15 рабочей среды затем подводится к вторичной стороне второго теплообменника W2.

На первичной стороне второй теплообменник W2 обтекается горячей термальной водой 20, которая выходит из второго теплообменника W2 как охлажденная термальная вода 22. Во втором теплообменнике W2 первый частично испаренный поток 15 рабочей среды за счет теплопередачи от горячей термальной воды 20 и тем самым охлаждения термальной воды 20 еще больше испаряется и вырабатывает второй по меньшей мере частично испаренный поток 18 рабочей среды. Второй частично испаренный поток 18 рабочей среды подается в сепаратор 4, в котором парообразная фаза 10 отделяется от жидкой фазы 19. Парообразная фаза 10 затем в турбине 2 расширяется, и ее энергия преобразуется в полезную форму, например, посредством не изображенного на чертеже генератора, в ток, и образует разреженную парообразную фазу 11. Для этого клапан 34 отпирается, а клапан 33 запирается.

В смесителе 5 разреженная парообразная фаза 11 и отделенная в сепараторе 4 жидкая фаза 19 вновь объединяются и образуют разреженный поток 12 рабочей среды.

Разреженный поток 12 рабочей среды в первом теплообменнике W1 частично конденсируется и формирует частично конденсированный разреженный поток 12а рабочей среды. Частично конденсированный разреженный поток 12а рабочей среды затем конденсируется в третьем теплообменнике (конденсаторе) W3 с помощью (подаваемого) потока 25 охлаждающей воды и формирует жидкий поток 13 рабочей среды. Тепло, передаваемое за счет конденсации разреженного потока 12а рабочей среды к потоку 25 охлаждающей воды, отводится посредством отводимого потока 26 охлаждающей воды.

В варианте контура 1, в первом теплообменнике W1 на первичной стороне, вместо уже частичного испарения рабочей среды, может также осуществляться только нагревание рабочей среды. По меньшей мере частичное испарение рабочей среды может тогда полностью осуществляться во втором теплообменнике W2.

В другом варианте контура 1, в контуре 1 между первым теплообменником W1 и вторым теплообменником W2 может включаться дополнительный четвертый теплообменник для передачи тепла отделенной в сепараторе 4 жидкой фазы 19 к нагретому или уже частично испаренному второму потоку 15 рабочей среды перед его подачей на второй теплообменник W2.

Для запуска контура сначала посредством запирания клапана 34 перекрывается подача парообразной фазы 10 к турбине 2. Вместо этого, клапан 33 отпирается, и отделенная посредством сепаратора 4 парообразная фаза 10 через обводной трубопровод 31 направляется мимо турбины 2 и первого теплообменника W1. Отделенная посредством сепаратора 4 парообразная фаза 10 подается - как в нормальном режиме работы контура 1 - через смеситель 5 к первому теплообменнику W1 и в нем за счет теплопередачи к жидкому потоку 14 рабочей среды охлаждается. После первого теплообменника W1 охлажденная отделенная жидкая фаза и отделенная парообразная фаза 10 объединяются в охлажденный поток рабочей среды.

Перед подачей объединенных фаз на третий теплообменник W3, для гомогенизации охлажденного потока рабочей среды, в сепараторе 40 жидкая фаза и парообразная фаза охлажденного потока рабочей среды отделяются одна от другой и затем посредством смесителя 41 объединяются вместе.

За счет направления парообразной фазы мимо первого теплообменника W1 при запуске контура предотвращается слишком высокая теплопередача к жидкому потоку рабочей среды на первичной стороне первого теплообменника W1, и тем самым нежелательно высокое и приводящее к пульсациям давления в контуре испарение жидкого потока 14 рабочей среды в первом теплообменнике W1.

Изобретение было описано выше на основе предпочтительных примеров выполнения, однако в общем случае не может рассматриваться как ограниченное этими примерами выполнения. Напротив, существует возможность множества вариаций и модификаций изобретения или этих примеров выполнения. Например, в контур могут включаться дополнительные клапаны.


СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР
Источник поступления информации: Роспатент

Показаны записи 761-770 из 1 428.
26.08.2017
№217.015.d711

Система щеточных уплотнений

Изобретение относится к системе щеточных уплотнений для уплотнения зазора (1) между ротором (2) и статором (3). Щеточное уплотнение (9) включает корпус (4) щетки и множество закрепленных в корпусе (4) щетки щетинок (5). Свободные концы щетинок (5) опираются по отношению к уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002623322
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.d745

Турбомашина и способ ее работы

Изобретение относится к турбомашине, в частности турбокомпрессору, содержащей по меньшей мере один ротор, который проходит вдоль оси (Х), по меньшей мере одно газовое уплотнение, которое с помощью защитного газа уплотняет зазор между ротором и статором турбомашины, подготовительный модуль,...
Тип: Изобретение
Номер охранного документа: 0002623323
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.d7a7

Элемент теплозащитного экрана для обвода воздуха компрессора вокруг камеры сгорания

Изобретение относится к энергетике. Элемент (14) теплозащитного экрана, в частности, для облицовки стенки камеры сгорания, включающий в себя первую стенку (17) с горячей стороной (18), на которую может подаваться горячая среда, с противолежащей горячей стороне (18) холодной стороной (19) и с...
Тип: Изобретение
Номер охранного документа: 0002622590
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d868

Конденсаторное устройство для проводящего шлейфа устройства для добычи "на месте" тяжелой нефти и битумов из месторождений нефтеносного песка

Группа изобретений касается конденсаторного устройства для проводящего шлейфа устройства для добычи «на месте» тяжелой нефти и битумов из месторождений нефтеносного песка, проводящего шлейфа, включающего в себя множество проводящих элементов, и конденсаторного устройства и способа изготовления...
Тип: Изобретение
Номер охранного документа: 0002622556
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d8d4

Изоляционные системы с улучшенной устойчивостью к частичному разряду, способ их изготовления

Настоящее изобретение касается области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду. Изобретение впервые...
Тип: Изобретение
Номер охранного документа: 0002623493
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.dc4b

Механически несущее и электрически изолирующее механическое соединение

Изобретение относится к механически несущему и электрически изолирующему механическому соединению (1) удлиненного полого тела (3), состоящего из электрически проводящего материала и проходящего вдоль оси (А), в частности полого цилиндра, с соединительным элементом (5), состоящим из электрически...
Тип: Изобретение
Номер охранного документа: 0002624257
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc5a

Способ переключения рабочего тока

Изобретение относится к способу переключения рабочего тока в ячеистой сети постоянного напряжения. Для того чтобы иметь возможность переключать рабочие токи в сети постоянного напряжения в обоих направлениях экономичным образом, предложен способ переключения рабочего тока в ячеистой сети (1)...
Тип: Изобретение
Номер охранного документа: 0002624254
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dc86

Нулевая точка генератора

Изобретение относится к электротехнике, а именно к электродинамической машине (1), которая содержит один корпус (2) и один ротор (4), а также нулевую точку (5), причем нулевая точка (5) расположена внутри корпуса (2) и может быть соединена с помощью закорачивающей перемычки (13, 15), причем...
Тип: Изобретение
Номер охранного документа: 0002624261
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcae

Горелка

Изобретение относится к энергетике. Горелка газовой турбины проходит вдоль оси (X) и содержит в осевом порядке: секцию (SW) завихрения, смесительную секцию (МХ), выходную секцию (ОТ), основную зону (CZ) горения. При этом указанная смесительная секция (МХ) проводит премикс (MFOCG) топлива (F) и...
Тип: Изобретение
Номер охранного документа: 0002624421
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd1b

Рельсовое транспортное средство, снабженное защищенным от замерзания водосливным трубопроводом

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено водосливным трубопроводом (1), концевая часть (2) которого примыкает к проему (4) в панели (5) пола рельсового транспортного средства. На концевой части (2) предусмотрена обогреваемая панель (7),...
Тип: Изобретение
Номер охранного документа: 0002624485
Дата охранного документа: 04.07.2017
Показаны записи 761-770 из 944.
25.08.2017
№217.015.c27b

Магнитный подшипник с компенсацией силы

Изобретение относится к устройству магнитного подшипника. Устройство магнитного подшипника содержит первое магнитное устройство, которое выполнено кольцеобразным и имеет центральную ось (1), для удержания вала (2) с возможностью поворота посредством магнитных сил на центральной оси, второе...
Тип: Изобретение
Номер охранного документа: 0002617911
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c672

Панельный элемент для пола железнодорожного вагона

Изобретение относится к железнодорожному транспорту. Панельный элемент (18) для пола железнодорожного вагона состоит из стальной листовой части с множеством противоударных структур жесткости (20). Соседние структуры жесткости (20) выступают в противоположных направлениях относительно...
Тип: Изобретение
Номер охранного документа: 0002618562
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c675

Машина с улавливающим подшипником гибридной конструкции

Изобретение относится к машине с улавливающим подшипником гибридной конструкции. Машина содержит статор (1) и ротор (2). Ротор (2) имеет вал (3) ротора, который установлен в подшипниках (4) так, что ротор (2) может вращаться вокруг оси (5) вращения. Подшипники (4) выполнены в виде активных...
Тип: Изобретение
Номер охранного документа: 0002618570
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c73c

Устройство для управления приводным механизмом рельсового транспортного средства

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте для управления механизмами приводной системы рельсового транспортного средства. Устройство содержит вычислительный блок и накопительный блок для хранения по меньшей мере одного программного модуля...
Тип: Изобретение
Номер охранного документа: 0002618834
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c750

Способ оптимизации газовой турбины к области ее применения

При оптимизации газовой турбины, имеющей лопатки с первым керамическим теплоизоляционным покрытием, к области ее применения извлекают лопатки из газовой турбины, после чего удаляют, по меньшей мере, частично первое керамическое теплоизоляционное покрытие с извлеченных из турбины лопаток и/или...
Тип: Изобретение
Номер охранного документа: 0002618988
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c7d4

Способ для предоставления службы имен внутри промышленной системы связи и маршрутизатор

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении безопасности передачи данных в сети. В способе IPv6-префиксы распространяют с помощью маршрутизатора посредством сообщений с оповещениями маршрутизатора в соответствующих нижележащих частичных...
Тип: Изобретение
Номер охранного документа: 0002619206
Дата охранного документа: 12.05.2017
25.08.2017
№217.015.c8b4

Способ переключения и устройство переключения

Изобретение относится к электротехнике. Устройство переключения с первой контактной стороной (6) имеет первый контактный элемент (12) номинального тока и первый контактный элемент (11) электрической дуги, перемещается относительно второй контактной стороны (7), имеющей второй контактный элемент...
Тип: Изобретение
Номер охранного документа: 0002619272
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8e8

Система выпрямителя тока с многофазным выпрямителем тока

Изобретение относится к системе (100) выпрямителя тока, включающей в себя многофазный выпрямитель (1) тока, который для каждой фазы выпрямителя тока включает в себя несколько электрически соединенных друг с другом модулей (3, 5) выпрямителя тока, и шкаф (23) выпрямителя тока, в котором...
Тип: Изобретение
Номер охранного документа: 0002619268
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8f8

Струйно-дефлекторное охлаждение рабочих или направляющих лопаток турбины

Данное изобретение относится к турбинному узлу (10, 10а), содержащему в основном полую лопатку (12) и по меньшей мере одно дефлекторное устройство (14, 14а, 14d), при этом полая лопатка (12) имеет по меньшей мере первую боковую стенку (16, 18), проходящую от входной кромки (20) к выходной...
Тип: Изобретение
Номер охранного документа: 0002619324
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8fd

Узел турбомашины

Узел турбомашины содержит лопатку для направления горячего газа во время работы турбомашины, кольцо статора для крепления лопатки, теплозащитный экран для защиты кольца статора от потока горячего газа. Теплозащитный экран располагается в направлении движения потока горячего газа перед кольцом...
Тип: Изобретение
Номер охранного документа: 0002619327
Дата охранного документа: 15.05.2017
+ добавить свой РИД