×
27.04.2013
216.012.3ab6

Результат интеллектуальной деятельности: СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР

Вид РИД

Изобретение

№ охранного документа
0002480591
Дата охранного документа
27.04.2013
Аннотация: Термодинамический контур содержит три теплообменника (W1, W2, W3), сепаратор (4), турбину (2), объединитель (5) и обводной трубопровод (31). Первый теплообменник (W1) для выработки первого нагретого или частично испаренного потока (15) рабочей среды путем теплопередачи от разреженного потока (12) рабочей среды. Второй теплообменник (W2) для выработки второго потока (18) рабочей среды посредством частичного испарения или дополнительного испарения первого потока (15) рабочей среды теплом, которое передается от внешнего источника (20) тепла. Третий теплообменник (W3) для полной конденсации разреженного потока (12а) рабочей среды. Сепаратор (4) для отделения жидкой фазы (19) от парообразной фазы (10) второго потока (18) рабочей среды. Турбина (2) для разрежения парообразной фазы (10), преобразования ее энергии в полезную форму и выработки разреженной парообразной фазы (11). Объединитель (5) для выработки разреженного потока (12) рабочей среды путем объединения жидкой фазы (19) и разреженной парообразной фазы (11). Обводной трубопровод (31) для обхода парообразной фазой (10) турбины (2) и первого теплообменника (W1). Трубопровод (31) ответвляется от трубопровода (32) между сепаратором (4) и турбиной (2) и входит в трубопровод (30) между первым теплообменником (W1) и третьим теплообменником (W3). Предотвращаются опасные пульсации давления в контуре во время запуска. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к способу функционирования термодинамического контура согласно родовому понятию пункта 1 формулы изобретения, а также к термодинамическому контуру согласно родовому понятию пункта 7 формулы изобретения, подобный контур описан, например, в ЕР 1 613 841 В1.

Тепловые электростанции используют термодинамические круговые [циклические, замкнутые] процессы для преобразования тепла в механическую или электрическую энергию. Обычные тепловые электростанции вырабатывают тепло за счет сжигания топлива, прежде всего ископаемых энергоносителей: угля, нефти и газа. Циклические процессы при этом функционируют на основе классического цикла Ранкина с водой в качестве рабочей среды. Ее высокая точка кипения делает воду, во всяком случае, прежде всего при использовании тепловых источников с температурами от 100 до 200°С, например геотермических жидкостей или отходящего тепла из процессов горения, непривлекательной ввиду недостаточной экономичности.

Для тепловых источников с такой низкой температурой в последние годы разработаны самые разнообразные технологии, которые позволяют преобразовывать их тепло с хорошим КПД в механическую или электрическую энергию. Наряду с циклом Ранкина с органической рабочей средой (органический цикл Ранкина - ORC), прежде всего, так называемый цикл Калина (Kalina cycle) характеризуется заметно лучшими КПД по сравнению с классическим циклом Ранкина.

На основе цикла Калина разработаны различные контуры для различных применений. Эти контуры применяют в качестве рабочей среды вместо воды двухкомпонентную смесь (например, аммиак и воду), причем используется неизотермический процесс кипения и конденсации смеси, чтобы повысить КПД контура в сравнении с циклом Ранкина.

Подобный цикл Калина, в особенности подходящий для температур от 100 до 200°С, в частности от 100 до 140°С, известен из ЕР 1 613 841 В1. Другой подобный известный контур известен из ЕР 1 070 830 А1.

Из традиционных воздушно-паровых контуров уже известно, для запуска подобного контура, выработанный пар сначала нужно проводить мимо турбины до тех пор, пока в контуре не будет сформировано достаточное для работы турбины давление. Однако если этот принцип применяется в вышеупомянутом цикле Калина, то во время запуска контура это может привести к пульсациям давления в контуре, которые могут стать настолько большими, что должно осуществляться аварийное отключение контура.

Поэтому задачей настоящего изобретения является создание способа функционирования контура согласно родовому понятию пункта 1 формулы изобретения, при котором при запуске могут быть предотвращены подобные пульсации. Кроме того, задачей предложенного изобретения является создание контура, в частности, для выполнения соответствующего изобретению способа, с помощью которого могут быть предотвращены подобные пульсации.

Решение задачи, направленной на способ, является предметом пункта 1 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 2-6. Решение задачи, направленной на термодинамический контур, является предметом пункта 7 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 8-12.

При этом изобретение исходит из знания того, что при запуске к первому теплообменнику подводится очень много энергии, когда разделенные сепаратором жидкая фаза и парообразная фаза сводятся вместе перед первым теплообменником. Это приводит к тому, что их полная энергия направляется в первый теплообменник и вследствие теплопередачи на его первичной стороне обуславливается сильное испарение жидкой рабочей среды. За счет этого происходят сильные изменения соотношений давления от входа в первый теплообменник до выхода из второго теплообменника, в частности, если давление рабочей среды на выходе из второго теплообменника или за сепаратором измеряется и используется в качестве регулирующей величины для контура. На основе изменяющихся соотношений давления и осуществляемых вместе с этим регулирующих воздействий могут вызываться процессы испарения, которые также могут неожиданным образом совпадать и тем самым формируют пульсации давления в контуре.

За счет направления отделенной парообразной фазы как мимо устройства создания разрежения, так и мимо первого теплообменника, предотвращается слишком высокий ввод тепла в первый теплообменник и тем самым слишком высокая теплопередача к жидкой рабочей среде. За счет этого можно предотвратить слишком сильное испарение жидкой рабочей среды в первом теплообменнике и тем самым надежным образом препятствовать пульсациям.

Предпочтительным образом, при охлаждаемом потоке рабочей среды жидкая фаза и парообразная фаза отделяются одна от другой и затем снова объединяются. За счет этого рабочая среда перед ее подачей в третий теплообменник гомогенизируется, и тем самым КПД контура улучшается.

Соответствующий изобретению контур характеризуется обводным трубопроводом, который ответвляется от трубопровода между сепаратором и устройством создания разрежения и после первого теплообменника входит в трубопровод между первым теплообменником и третьим теплообменником.

Преимущества и соображения, упомянутые для способа, соответствующего изобретению, также справедливы и для контура, соответствующего изобретению.

Предпочтительным образом, для гомогенизации рабочей среды перед ее подачей к третьему теплообменнику и тем самым для улучшения КПД контура, в трубопровод между первым теплообменником и третьим теплообменником между входом обводного трубопровода и третьим теплообменником включен дополнительный сепаратор для разделения жидкой фазы от парообразной фазы и смеситель для смешивания разделенной дополнительным сепаратором жидкой и парообразной фазы.

Согласно варианту выполнения изобретения в качестве рабочего средства применяется многокомпонентная смесь. В случае многокомпонентной смеси речь идет предпочтительно о двухкомпонентной смеси, в частности смеси аммиака с водой. На основе неизотермического испарения и конденсации такой смеси может, в частности, достигаться особенно высокий КПД контура.

Особенно экологически чистое получение энергии достигается за счет применения геотермической жидкости, в частности термальных вод, из геотермального источника в качестве источника тепла. Но в качестве источника тепла также могут применяться отработавшие газы (дымовые газы) газо- и/или паротурбинных установок или тепло, вырабатываемое в промышленных производственных процессах (например, при производстве стали).

Высокий КПД контура может при этом достигаться и в том случае, если источник тепла имеет температуру от 100°С до 200°С, в частности от 100°С до 140°С.

Изобретение и другие предпочтительные варианты выполнения изобретения согласно признакам зависимых пунктов далее поясняются на примере выполнения со ссылками на фиг.1, на которой показан соответствующий изобретению термодинамический контур в упрощенном схематичном представлении.

Показанный на чертеже термодинамический контур 1 содержит первый теплообменник (подогреватель) W1, второй теплообменник (испаритель) W2 и третий теплообменник (конденсатор) W3.

Второй теплообменник W2 на первичной стороне находится в контакте с внешним источником тепла, в показанном примере выполнения он на первичной стороне обтекается горячей термальной водой 20 не изображенного более подробно геотермального источника, и на вторичной стороне соединен как с первым теплообменником W1, так и с сепаратором 4. Сепаратор 4 служит для отделения парообразной фазы от жидкой фазы частично испаренной рабочей среды. Выход со стороны пара сепаратора 4 связан с турбиной 2 в качестве устройства создания разрежения. Турбина 2 со стороны выхода соединена с объединителем в форме смесителя 5. Смеситель 5 дополнительно соединен с выходом жидкости сепаратора 4. Со стороны выхода смеситель 5 соединен с вторичной стороной первого теплообменника W1. Последний на вторичной стороне вновь через трубопровод 30 соединен с первичной стороной третьего теплообменника W3 (конденсатора), обтекаемого с вторичной стороны охлаждающей водой 25.

Обводной трубопровод 31 служит для обхода турбины 2 и первого теплообменника W1 для парообразной фазы, отделенной в сепараторе 4. Обводной трубопровод 31 ответвляется от трубопровода 32 между сепаратором 4 и турбиной 2 и входит после первого теплообменника W1 в трубопровод 30 между первым теплообменником W1 и третьим теплообменником W3. Вентили 33, 34 служат для управления и/или регулирования подачи парообразной фазы 10 в обводной трубопровод 31 или в турбину 2.

В трубопроводе 30 между первым теплообменником W1 и третьим теплообменником W3 между вводом 35 обводного трубопровода 31 и третьим теплообменником W3 включен дополнительный сепаратор 40 для отделения жидкой фазы от парообразной фазы и дополнительный смеситель 41 для смешивания отделенной сепаратором 40 жидкой фазы с отделенной парообразной фазой.

Третий теплообменник (конденсатор) W3 на своем выходе первичной стороны, в необходимом случае через не изображенный подробно бак конденсата, через насос 3 соединен с первичной стороной первого теплообменника W1. Первичная сторона первого теплообменника W1 вновь соединена с вторичной стороной уже упомянутого второго теплообменника W2.

В качестве рабочей среды в контуре 1 применяется двухкомпонентная смесь из воды и аммиака, которая, таким образом, имеет неизотермическое испарение и конденсацию.

При нормальном режиме работы контура 1 рабочая среда после третьего теплообменника (конденсатора) W3 имеется в жидком состоянии как жидкий поток 13 рабочей среды. С помощью насоса жидкий поток 13 рабочей среды накачивается на повышенное давление и формирует нагруженный давлением жидкий поток 14 рабочей среды. При этом, естественно, также возможно, что жидкий поток 13 рабочей среды после третьего теплообменника (конденсатора) W3 подводится сначала к баку конденсата, там накапливается промежуточным образом и оттуда с помощью насоса 3 откачивается и приводится на повышенное давление.

Нагруженный давлением жидкий поток 14 рабочей среды подается к первичной стороне первого теплообменника W1 и нагревается и даже частично испаряется за счет частичной конденсации проводимого с вторичной стороны через первый теплообменник W1 разреженного потока 12 рабочей среды, так что на первичной стороне после первого теплообменника W1 имеется первый частично испаренный поток 15 рабочей среды, а с вторичной стороны - частично сконденсированный разреженный поток 12а рабочей среды. Доля пара в первом частично испаренном потоке 15 рабочей среды составляет, например, 15%.

Первый частично испаренный поток 15 рабочей среды затем подводится к вторичной стороне второго теплообменника W2.

На первичной стороне второй теплообменник W2 обтекается горячей термальной водой 20, которая выходит из второго теплообменника W2 как охлажденная термальная вода 22. Во втором теплообменнике W2 первый частично испаренный поток 15 рабочей среды за счет теплопередачи от горячей термальной воды 20 и тем самым охлаждения термальной воды 20 еще больше испаряется и вырабатывает второй по меньшей мере частично испаренный поток 18 рабочей среды. Второй частично испаренный поток 18 рабочей среды подается в сепаратор 4, в котором парообразная фаза 10 отделяется от жидкой фазы 19. Парообразная фаза 10 затем в турбине 2 расширяется, и ее энергия преобразуется в полезную форму, например, посредством не изображенного на чертеже генератора, в ток, и образует разреженную парообразную фазу 11. Для этого клапан 34 отпирается, а клапан 33 запирается.

В смесителе 5 разреженная парообразная фаза 11 и отделенная в сепараторе 4 жидкая фаза 19 вновь объединяются и образуют разреженный поток 12 рабочей среды.

Разреженный поток 12 рабочей среды в первом теплообменнике W1 частично конденсируется и формирует частично конденсированный разреженный поток 12а рабочей среды. Частично конденсированный разреженный поток 12а рабочей среды затем конденсируется в третьем теплообменнике (конденсаторе) W3 с помощью (подаваемого) потока 25 охлаждающей воды и формирует жидкий поток 13 рабочей среды. Тепло, передаваемое за счет конденсации разреженного потока 12а рабочей среды к потоку 25 охлаждающей воды, отводится посредством отводимого потока 26 охлаждающей воды.

В варианте контура 1, в первом теплообменнике W1 на первичной стороне, вместо уже частичного испарения рабочей среды, может также осуществляться только нагревание рабочей среды. По меньшей мере частичное испарение рабочей среды может тогда полностью осуществляться во втором теплообменнике W2.

В другом варианте контура 1, в контуре 1 между первым теплообменником W1 и вторым теплообменником W2 может включаться дополнительный четвертый теплообменник для передачи тепла отделенной в сепараторе 4 жидкой фазы 19 к нагретому или уже частично испаренному второму потоку 15 рабочей среды перед его подачей на второй теплообменник W2.

Для запуска контура сначала посредством запирания клапана 34 перекрывается подача парообразной фазы 10 к турбине 2. Вместо этого, клапан 33 отпирается, и отделенная посредством сепаратора 4 парообразная фаза 10 через обводной трубопровод 31 направляется мимо турбины 2 и первого теплообменника W1. Отделенная посредством сепаратора 4 парообразная фаза 10 подается - как в нормальном режиме работы контура 1 - через смеситель 5 к первому теплообменнику W1 и в нем за счет теплопередачи к жидкому потоку 14 рабочей среды охлаждается. После первого теплообменника W1 охлажденная отделенная жидкая фаза и отделенная парообразная фаза 10 объединяются в охлажденный поток рабочей среды.

Перед подачей объединенных фаз на третий теплообменник W3, для гомогенизации охлажденного потока рабочей среды, в сепараторе 40 жидкая фаза и парообразная фаза охлажденного потока рабочей среды отделяются одна от другой и затем посредством смесителя 41 объединяются вместе.

За счет направления парообразной фазы мимо первого теплообменника W1 при запуске контура предотвращается слишком высокая теплопередача к жидкому потоку рабочей среды на первичной стороне первого теплообменника W1, и тем самым нежелательно высокое и приводящее к пульсациям давления в контуре испарение жидкого потока 14 рабочей среды в первом теплообменнике W1.

Изобретение было описано выше на основе предпочтительных примеров выполнения, однако в общем случае не может рассматриваться как ограниченное этими примерами выполнения. Напротив, существует возможность множества вариаций и модификаций изобретения или этих примеров выполнения. Например, в контур могут включаться дополнительные клапаны.


СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР
Источник поступления информации: Роспатент

Показаны записи 531-540 из 1 428.
20.02.2016
№216.014.cd66

Способ компьютерного моделирования технической системы

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при...
Тип: Изобретение
Номер охранного документа: 0002575417
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.ddab

Устройство и способ для добычи, особенно добычи на месте залегания (in-situ), углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу для добычи углеводородсодержащего вещества, особенно битума или тяжелой фракции нефти, из резервуара. Резервуар нагружается тепловой энергией для снижения вязкости вещества, для чего предусмотрен по меньшей мере один проводящий шлейф для...
Тип: Изобретение
Номер охранного документа: 0002579058
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e873

Диффузор отходящего газа для газовой турбины, газовая турбина с таким диффузором и способ работы такой газовой турбины

Диффузор отходящего газа газовой турбины содержит кольцеобразную наружную стенку для направления потока и кольцеобразный направляющий элемент, расположенный концентрично наружной стенке. Направленная радиально внутрь поверхность направляющего элемента имеет окружной, в продольном сечении...
Тип: Изобретение
Номер охранного документа: 0002575212
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.e884

Устройство охлаждения ротора электрической машины

Изобретение касается электрической машины и устройства её охлаждения. Технический результат заключается в повышении эффективности охлаждения вала. Электрическая машина (12) содержит статор (16), ротор (18) и вал (20), который механически соединен с ротором (18). При этом вал (20) содержит...
Тип: Изобретение
Номер охранного документа: 0002575011
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8d9

Многофазно изолированный сжатым газом модуль кабельного ввода, снабженный герметичной оболочкой

Изобретение касается многофазно изолированного сжатым газом модуля кабельного ввода имеющего герметичную оболочку. Внутри герметичной оболочки расположено несколько электрически изолированных друг от друга посредством изоляции сжатым газом фазных проводов (10a, 10b). Эти фазные провода (10a,...
Тип: Изобретение
Номер охранного документа: 0002575867
Дата охранного документа: 20.02.2016
Показаны записи 531-540 из 944.
10.03.2016
№216.014.c13d

Способ эксплуатации стационарной газотурбинной установки и всасывающий канал для всасываемого воздуха газотурбинной установки

Способ (39) эксплуатации стационарной газотурбинной установки (10), которая оснащена по меньшей мере одним фильтром (32, 34) для очистки всасываемого воздуха (А) и подсоединена к генератору (20). Генератор выполнен с возможностью запитывания электрической энергии в электрическую...
Тип: Изобретение
Номер охранного документа: 0002576407
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c16f

Масштабируемый по мощности и частоте инвертор

Изобретение относится к области электротехники и может быть использовано в инверторе для предоставления масштабируемого по частоте выходного сигнала инвертора, в особенности с высокой выходной мощностью. Технический результат - создание инвертора с низкими затратами для высоких напряжений или...
Тип: Изобретение
Номер охранного документа: 0002576249
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c18b

Топливная система газопаротурбинной установки и способ ее промывки

Топливная система (8) и способ её промывки для газопаротурбинной установки с интегрированной газификацией угля, включающей газовую турбину (1). Топливная система (8) подключена к камере (3) сгорания газовой турбины (1) и содержит устройство (10) для газификации природного топлива и газопровод...
Тип: Изобретение
Номер охранного документа: 0002576398
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c199

Возбудитель блока генерирования мощности, блок генерирования мощности и оборудование вывода энергии в электрической сети

Использование: в области электроэнергетики. Технический результат - повышение надежности и стабильности подачи питания к электрической сети. Возбудитель блока генерирования мощности включает в себя контроллер возбуждения для генерирования сигнала возбуждения согласно первому управляющему...
Тип: Изобретение
Номер охранного документа: 0002576021
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1d2

Способ получения противокоронной защиты, быстроотверждаемая система защиты от коронного разряда, и электрическая машина

Изобретение относится к способу получения противокоронной защиты для электрических машин. Противокоронная защита отверждается, по меньшей мере, с помощью УФ-излучения и имеет электрически полупроводящий наполнитель, который может содержать карбид кремния и/или графит. Отверждение может...
Тип: Изобретение
Номер охранного документа: 0002574607
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c323

Сплав, защитное покрытие и конструкционная деталь

Изобретение относится к области металлургии, а именно к защитным покрытиям конструкционных деталей. Сплав на основе никеля для защитного покрытия конструкционной детали, в частности детали газовой турбины, предназначенного для защиты от коррозии и/или окисления детали при высоких температурах,...
Тип: Изобретение
Номер охранного документа: 0002574559
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c35a

Способ эксплуатации сортировочной горки и система управления сортировочной горкой

Изобретение относится к области железнодорожной автоматики, в частности к управлению сортировочными горками. Техническое решение заключается в том, что для соответствующих отцепов (100, 101) в виде скатывающихся вагонов или групп вагонов для первого вагонного замедлителя (70), исходя из...
Тип: Изобретение
Номер охранного документа: 0002574039
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c3b8

Способ эксплуатации сортировочной станции, а также управляющее устройство для сортировочной станции

Изобретение относится к области управления и эксплуатации сортировочной станции. В способе определяют местоположение (p1) локомотива (10) на пути (100) приема сортировочной станции по отношению к подлежащему расформированию блоку (60), перемещаемому от локомотива (10) из пути (100) приема к...
Тип: Изобретение
Номер охранного документа: 0002574287
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c42c

Устройство и способ загрузки транспортной единицы

Устройство для загрузки транспортной единицы (10), предусмотренной для транспортировки штучных грузов (12), в частности почтовых отправлений, включает в себя первую и вторую вдвигаемые в транспортную единицу (10) на различной высоте транспортерные секции (18, 20) для перемещения и выгрузки...
Тип: Изобретение
Номер охранного документа: 0002574507
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4f8

Способ формирования последовательности импульсных сигналов

Изобретение относится к способу формирования последовательности импульсных сигналов, используя процессор, в частности, для системы калибровки системы измерения синхронизации венцов в турбомашине или другом вращающемся оборудовании. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002574358
Дата охранного документа: 10.02.2016
+ добавить свой РИД