×
27.04.2013
216.012.3ab6

Результат интеллектуальной деятельности: СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР

Вид РИД

Изобретение

№ охранного документа
0002480591
Дата охранного документа
27.04.2013
Аннотация: Термодинамический контур содержит три теплообменника (W1, W2, W3), сепаратор (4), турбину (2), объединитель (5) и обводной трубопровод (31). Первый теплообменник (W1) для выработки первого нагретого или частично испаренного потока (15) рабочей среды путем теплопередачи от разреженного потока (12) рабочей среды. Второй теплообменник (W2) для выработки второго потока (18) рабочей среды посредством частичного испарения или дополнительного испарения первого потока (15) рабочей среды теплом, которое передается от внешнего источника (20) тепла. Третий теплообменник (W3) для полной конденсации разреженного потока (12а) рабочей среды. Сепаратор (4) для отделения жидкой фазы (19) от парообразной фазы (10) второго потока (18) рабочей среды. Турбина (2) для разрежения парообразной фазы (10), преобразования ее энергии в полезную форму и выработки разреженной парообразной фазы (11). Объединитель (5) для выработки разреженного потока (12) рабочей среды путем объединения жидкой фазы (19) и разреженной парообразной фазы (11). Обводной трубопровод (31) для обхода парообразной фазой (10) турбины (2) и первого теплообменника (W1). Трубопровод (31) ответвляется от трубопровода (32) между сепаратором (4) и турбиной (2) и входит в трубопровод (30) между первым теплообменником (W1) и третьим теплообменником (W3). Предотвращаются опасные пульсации давления в контуре во время запуска. 2 н. и 10 з.п. ф-лы, 1 ил.

Изобретение относится к способу функционирования термодинамического контура согласно родовому понятию пункта 1 формулы изобретения, а также к термодинамическому контуру согласно родовому понятию пункта 7 формулы изобретения, подобный контур описан, например, в ЕР 1 613 841 В1.

Тепловые электростанции используют термодинамические круговые [циклические, замкнутые] процессы для преобразования тепла в механическую или электрическую энергию. Обычные тепловые электростанции вырабатывают тепло за счет сжигания топлива, прежде всего ископаемых энергоносителей: угля, нефти и газа. Циклические процессы при этом функционируют на основе классического цикла Ранкина с водой в качестве рабочей среды. Ее высокая точка кипения делает воду, во всяком случае, прежде всего при использовании тепловых источников с температурами от 100 до 200°С, например геотермических жидкостей или отходящего тепла из процессов горения, непривлекательной ввиду недостаточной экономичности.

Для тепловых источников с такой низкой температурой в последние годы разработаны самые разнообразные технологии, которые позволяют преобразовывать их тепло с хорошим КПД в механическую или электрическую энергию. Наряду с циклом Ранкина с органической рабочей средой (органический цикл Ранкина - ORC), прежде всего, так называемый цикл Калина (Kalina cycle) характеризуется заметно лучшими КПД по сравнению с классическим циклом Ранкина.

На основе цикла Калина разработаны различные контуры для различных применений. Эти контуры применяют в качестве рабочей среды вместо воды двухкомпонентную смесь (например, аммиак и воду), причем используется неизотермический процесс кипения и конденсации смеси, чтобы повысить КПД контура в сравнении с циклом Ранкина.

Подобный цикл Калина, в особенности подходящий для температур от 100 до 200°С, в частности от 100 до 140°С, известен из ЕР 1 613 841 В1. Другой подобный известный контур известен из ЕР 1 070 830 А1.

Из традиционных воздушно-паровых контуров уже известно, для запуска подобного контура, выработанный пар сначала нужно проводить мимо турбины до тех пор, пока в контуре не будет сформировано достаточное для работы турбины давление. Однако если этот принцип применяется в вышеупомянутом цикле Калина, то во время запуска контура это может привести к пульсациям давления в контуре, которые могут стать настолько большими, что должно осуществляться аварийное отключение контура.

Поэтому задачей настоящего изобретения является создание способа функционирования контура согласно родовому понятию пункта 1 формулы изобретения, при котором при запуске могут быть предотвращены подобные пульсации. Кроме того, задачей предложенного изобретения является создание контура, в частности, для выполнения соответствующего изобретению способа, с помощью которого могут быть предотвращены подобные пульсации.

Решение задачи, направленной на способ, является предметом пункта 1 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 2-6. Решение задачи, направленной на термодинамический контур, является предметом пункта 7 формулы изобретения. Предпочтительные варианты осуществления являются предметом пунктов 8-12.

При этом изобретение исходит из знания того, что при запуске к первому теплообменнику подводится очень много энергии, когда разделенные сепаратором жидкая фаза и парообразная фаза сводятся вместе перед первым теплообменником. Это приводит к тому, что их полная энергия направляется в первый теплообменник и вследствие теплопередачи на его первичной стороне обуславливается сильное испарение жидкой рабочей среды. За счет этого происходят сильные изменения соотношений давления от входа в первый теплообменник до выхода из второго теплообменника, в частности, если давление рабочей среды на выходе из второго теплообменника или за сепаратором измеряется и используется в качестве регулирующей величины для контура. На основе изменяющихся соотношений давления и осуществляемых вместе с этим регулирующих воздействий могут вызываться процессы испарения, которые также могут неожиданным образом совпадать и тем самым формируют пульсации давления в контуре.

За счет направления отделенной парообразной фазы как мимо устройства создания разрежения, так и мимо первого теплообменника, предотвращается слишком высокий ввод тепла в первый теплообменник и тем самым слишком высокая теплопередача к жидкой рабочей среде. За счет этого можно предотвратить слишком сильное испарение жидкой рабочей среды в первом теплообменнике и тем самым надежным образом препятствовать пульсациям.

Предпочтительным образом, при охлаждаемом потоке рабочей среды жидкая фаза и парообразная фаза отделяются одна от другой и затем снова объединяются. За счет этого рабочая среда перед ее подачей в третий теплообменник гомогенизируется, и тем самым КПД контура улучшается.

Соответствующий изобретению контур характеризуется обводным трубопроводом, который ответвляется от трубопровода между сепаратором и устройством создания разрежения и после первого теплообменника входит в трубопровод между первым теплообменником и третьим теплообменником.

Преимущества и соображения, упомянутые для способа, соответствующего изобретению, также справедливы и для контура, соответствующего изобретению.

Предпочтительным образом, для гомогенизации рабочей среды перед ее подачей к третьему теплообменнику и тем самым для улучшения КПД контура, в трубопровод между первым теплообменником и третьим теплообменником между входом обводного трубопровода и третьим теплообменником включен дополнительный сепаратор для разделения жидкой фазы от парообразной фазы и смеситель для смешивания разделенной дополнительным сепаратором жидкой и парообразной фазы.

Согласно варианту выполнения изобретения в качестве рабочего средства применяется многокомпонентная смесь. В случае многокомпонентной смеси речь идет предпочтительно о двухкомпонентной смеси, в частности смеси аммиака с водой. На основе неизотермического испарения и конденсации такой смеси может, в частности, достигаться особенно высокий КПД контура.

Особенно экологически чистое получение энергии достигается за счет применения геотермической жидкости, в частности термальных вод, из геотермального источника в качестве источника тепла. Но в качестве источника тепла также могут применяться отработавшие газы (дымовые газы) газо- и/или паротурбинных установок или тепло, вырабатываемое в промышленных производственных процессах (например, при производстве стали).

Высокий КПД контура может при этом достигаться и в том случае, если источник тепла имеет температуру от 100°С до 200°С, в частности от 100°С до 140°С.

Изобретение и другие предпочтительные варианты выполнения изобретения согласно признакам зависимых пунктов далее поясняются на примере выполнения со ссылками на фиг.1, на которой показан соответствующий изобретению термодинамический контур в упрощенном схематичном представлении.

Показанный на чертеже термодинамический контур 1 содержит первый теплообменник (подогреватель) W1, второй теплообменник (испаритель) W2 и третий теплообменник (конденсатор) W3.

Второй теплообменник W2 на первичной стороне находится в контакте с внешним источником тепла, в показанном примере выполнения он на первичной стороне обтекается горячей термальной водой 20 не изображенного более подробно геотермального источника, и на вторичной стороне соединен как с первым теплообменником W1, так и с сепаратором 4. Сепаратор 4 служит для отделения парообразной фазы от жидкой фазы частично испаренной рабочей среды. Выход со стороны пара сепаратора 4 связан с турбиной 2 в качестве устройства создания разрежения. Турбина 2 со стороны выхода соединена с объединителем в форме смесителя 5. Смеситель 5 дополнительно соединен с выходом жидкости сепаратора 4. Со стороны выхода смеситель 5 соединен с вторичной стороной первого теплообменника W1. Последний на вторичной стороне вновь через трубопровод 30 соединен с первичной стороной третьего теплообменника W3 (конденсатора), обтекаемого с вторичной стороны охлаждающей водой 25.

Обводной трубопровод 31 служит для обхода турбины 2 и первого теплообменника W1 для парообразной фазы, отделенной в сепараторе 4. Обводной трубопровод 31 ответвляется от трубопровода 32 между сепаратором 4 и турбиной 2 и входит после первого теплообменника W1 в трубопровод 30 между первым теплообменником W1 и третьим теплообменником W3. Вентили 33, 34 служат для управления и/или регулирования подачи парообразной фазы 10 в обводной трубопровод 31 или в турбину 2.

В трубопроводе 30 между первым теплообменником W1 и третьим теплообменником W3 между вводом 35 обводного трубопровода 31 и третьим теплообменником W3 включен дополнительный сепаратор 40 для отделения жидкой фазы от парообразной фазы и дополнительный смеситель 41 для смешивания отделенной сепаратором 40 жидкой фазы с отделенной парообразной фазой.

Третий теплообменник (конденсатор) W3 на своем выходе первичной стороны, в необходимом случае через не изображенный подробно бак конденсата, через насос 3 соединен с первичной стороной первого теплообменника W1. Первичная сторона первого теплообменника W1 вновь соединена с вторичной стороной уже упомянутого второго теплообменника W2.

В качестве рабочей среды в контуре 1 применяется двухкомпонентная смесь из воды и аммиака, которая, таким образом, имеет неизотермическое испарение и конденсацию.

При нормальном режиме работы контура 1 рабочая среда после третьего теплообменника (конденсатора) W3 имеется в жидком состоянии как жидкий поток 13 рабочей среды. С помощью насоса жидкий поток 13 рабочей среды накачивается на повышенное давление и формирует нагруженный давлением жидкий поток 14 рабочей среды. При этом, естественно, также возможно, что жидкий поток 13 рабочей среды после третьего теплообменника (конденсатора) W3 подводится сначала к баку конденсата, там накапливается промежуточным образом и оттуда с помощью насоса 3 откачивается и приводится на повышенное давление.

Нагруженный давлением жидкий поток 14 рабочей среды подается к первичной стороне первого теплообменника W1 и нагревается и даже частично испаряется за счет частичной конденсации проводимого с вторичной стороны через первый теплообменник W1 разреженного потока 12 рабочей среды, так что на первичной стороне после первого теплообменника W1 имеется первый частично испаренный поток 15 рабочей среды, а с вторичной стороны - частично сконденсированный разреженный поток 12а рабочей среды. Доля пара в первом частично испаренном потоке 15 рабочей среды составляет, например, 15%.

Первый частично испаренный поток 15 рабочей среды затем подводится к вторичной стороне второго теплообменника W2.

На первичной стороне второй теплообменник W2 обтекается горячей термальной водой 20, которая выходит из второго теплообменника W2 как охлажденная термальная вода 22. Во втором теплообменнике W2 первый частично испаренный поток 15 рабочей среды за счет теплопередачи от горячей термальной воды 20 и тем самым охлаждения термальной воды 20 еще больше испаряется и вырабатывает второй по меньшей мере частично испаренный поток 18 рабочей среды. Второй частично испаренный поток 18 рабочей среды подается в сепаратор 4, в котором парообразная фаза 10 отделяется от жидкой фазы 19. Парообразная фаза 10 затем в турбине 2 расширяется, и ее энергия преобразуется в полезную форму, например, посредством не изображенного на чертеже генератора, в ток, и образует разреженную парообразную фазу 11. Для этого клапан 34 отпирается, а клапан 33 запирается.

В смесителе 5 разреженная парообразная фаза 11 и отделенная в сепараторе 4 жидкая фаза 19 вновь объединяются и образуют разреженный поток 12 рабочей среды.

Разреженный поток 12 рабочей среды в первом теплообменнике W1 частично конденсируется и формирует частично конденсированный разреженный поток 12а рабочей среды. Частично конденсированный разреженный поток 12а рабочей среды затем конденсируется в третьем теплообменнике (конденсаторе) W3 с помощью (подаваемого) потока 25 охлаждающей воды и формирует жидкий поток 13 рабочей среды. Тепло, передаваемое за счет конденсации разреженного потока 12а рабочей среды к потоку 25 охлаждающей воды, отводится посредством отводимого потока 26 охлаждающей воды.

В варианте контура 1, в первом теплообменнике W1 на первичной стороне, вместо уже частичного испарения рабочей среды, может также осуществляться только нагревание рабочей среды. По меньшей мере частичное испарение рабочей среды может тогда полностью осуществляться во втором теплообменнике W2.

В другом варианте контура 1, в контуре 1 между первым теплообменником W1 и вторым теплообменником W2 может включаться дополнительный четвертый теплообменник для передачи тепла отделенной в сепараторе 4 жидкой фазы 19 к нагретому или уже частично испаренному второму потоку 15 рабочей среды перед его подачей на второй теплообменник W2.

Для запуска контура сначала посредством запирания клапана 34 перекрывается подача парообразной фазы 10 к турбине 2. Вместо этого, клапан 33 отпирается, и отделенная посредством сепаратора 4 парообразная фаза 10 через обводной трубопровод 31 направляется мимо турбины 2 и первого теплообменника W1. Отделенная посредством сепаратора 4 парообразная фаза 10 подается - как в нормальном режиме работы контура 1 - через смеситель 5 к первому теплообменнику W1 и в нем за счет теплопередачи к жидкому потоку 14 рабочей среды охлаждается. После первого теплообменника W1 охлажденная отделенная жидкая фаза и отделенная парообразная фаза 10 объединяются в охлажденный поток рабочей среды.

Перед подачей объединенных фаз на третий теплообменник W3, для гомогенизации охлажденного потока рабочей среды, в сепараторе 40 жидкая фаза и парообразная фаза охлажденного потока рабочей среды отделяются одна от другой и затем посредством смесителя 41 объединяются вместе.

За счет направления парообразной фазы мимо первого теплообменника W1 при запуске контура предотвращается слишком высокая теплопередача к жидкому потоку рабочей среды на первичной стороне первого теплообменника W1, и тем самым нежелательно высокое и приводящее к пульсациям давления в контуре испарение жидкого потока 14 рабочей среды в первом теплообменнике W1.

Изобретение было описано выше на основе предпочтительных примеров выполнения, однако в общем случае не может рассматриваться как ограниченное этими примерами выполнения. Напротив, существует возможность множества вариаций и модификаций изобретения или этих примеров выполнения. Например, в контур могут включаться дополнительные клапаны.


СПОСОБ ФУНКЦИОНИРОВАНИЯ ТЕРМОДИНАМИЧЕСКОГО КОНТУРА И ТЕРМОДИНАМИЧЕСКИЙ КОНТУР
Источник поступления информации: Роспатент

Показаны записи 1 081-1 090 из 1 428.
26.10.2018
№218.016.96a2

Электрическая машина с жидкостным охлаждением

Изобретение относится к области электротехники, в частности к асинхронной машине, имеющей охлаждаемый ротор. Технический результат - обеспечение эффективной герметизации охлаждающей среды. Электрическая машина имеет статор, опертый с возможностью вращения ротор, имеющий вал и...
Тип: Изобретение
Номер охранного документа: 0002670601
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.9818

Принцип охлаждения для лопаток или направляющих лопаток турбины

Узел турбины содержит полое перо, имеющее, по меньшей мере, основную полость, по меньшей мере, с трубой для охлаждения натеканием, с полкой и с камерой охлаждения. Труба является вставляемой в основную полость полого пера и используется для охлаждения натеканием, по меньшей мере, внутренней...
Тип: Изобретение
Номер охранного документа: 0002671251
Дата охранного документа: 30.10.2018
09.11.2018
№218.016.9b81

Система изоляции для электрических машин

Изобретение относится к системе изоляции для электрических машин, в частности в области высоких напряжений. Система изоляции для электрических машин включает в себя твердый и пористый изоляционный материал и каталитически и/или термически отверждаемую пропиточную смолу. Пропиточная смола...
Тип: Изобретение
Номер охранного документа: 0002671944
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bce

Рельсовое транспортное средство с кабинным устройством отображения

Группа изобретений относится к рельсовому транспортному средству. Рельсовое транспортное средство содержит комплект подсистем эксплуатационных средств, кабинное устройство отображения информации машинисту, которое включает в себя центральный блок отображения. Кабинное устройство отображения...
Тип: Изобретение
Номер охранного документа: 0002671922
Дата охранного документа: 07.11.2018
14.11.2018
№218.016.9cfc

Устройство для магнитной установки вала

Изобретение касается устройства для магнитной установки вала. Устройство для установки вала (3) содержит окружающее вал (3) магнитное ярмо (1) с U-образным профилем, причем плечи U-образного профиля расположены радиально, а отверстие U-образного профиля указывает на вал (3), по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002672344
Дата охранного документа: 13.11.2018
14.11.2018
№218.016.9d15

Ввод перегрузки в паровую турбину

Изобретение относится к устройству (1), содержащему паровую турбину (2) и перегрузочный клапан (12), причем перегрузочный клапан (12) расположен напротив клапана (7) свежего пара, а свежий пар течет частично через проточный канал и частично через перегрузочный клапан (12) в перегрузочную...
Тип: Изобретение
Номер охранного документа: 0002672221
Дата охранного документа: 12.11.2018
14.11.2018
№218.016.9d2f

Расположение горелок камеры сгорания

Изобретение относится к оборудованию камеры сгорания газотурбинного двигателя и, в частности, к трубке для жидкого топлива для системы горелок оборудования камеры сгорания, к расположению горелок и к способу работы оборудования камеры сгорания. Топливная трубка (56) для горелки камеры сгорания...
Тип: Изобретение
Номер охранного документа: 0002672216
Дата охранного документа: 12.11.2018
21.11.2018
№218.016.9eb0

Коаксиальная конструкция для вспомогательного блока

Описан RC делитель (1) напряжения, содержащий основную часть (3), вспомогательную часть (2), соединенную с основной частью (3), причем вспомогательная часть (2) содержит коаксиальное расширение, отличающийся тем, что вспомогательная часть (2) содержит провод (4) ответвления и электронные...
Тип: Изобретение
Номер охранного документа: 0002672770
Дата охранного документа: 19.11.2018
23.11.2018
№218.016.a027

Распираемая пазовая крышка для электрической машины

Изобретение относится к области электротехники и касается устройства для закрытия паза статора или ротора электрической машины. Технический результат – повышение технологичности. Устройство для закрытия паза статора или ротора электрической машины включает закрывающий элемент, содержащий...
Тип: Изобретение
Номер охранного документа: 0002673071
Дата охранного документа: 22.11.2018
23.11.2018
№218.016.a042

Нагреватель месторождения

Группа изобретений относится к нагревателю месторождения для индуктивного нагревания геологической формации, в частности месторождения нефтеносных песков, горючих сланцев, особо тяжелой нефти или тяжелой нефти. Нагреватель (1) содержит по меньшей мере один первый и второй генератор (2.1, 2.2)...
Тип: Изобретение
Номер охранного документа: 0002673091
Дата охранного документа: 22.11.2018
Показаны записи 941-944 из 944.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
19.06.2019
№219.017.8731

Способ и устройство для передачи тепла от источника тепла к термодинамическому циклу с рабочей средой с по крайней мере двумя веществами с неизотермическим испарением и конденсацией

Изобретение относится к энергетике. Предлагается в первом шаге передавать тепло источника тепла к циклу горячей жидкости и во втором шаге от цикла горячей жидкости к циклу с рабочей средой с по крайней мере двумя веществами с не-изотермическим испарением и конденсацией. Через промежуточно...
Тип: Изобретение
Номер охранного документа: 0002358129
Дата охранного документа: 10.06.2009
+ добавить свой РИД