×
20.04.2013
216.012.36e0

Результат интеллектуальной деятельности: ЭПОКСИДНАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания двухкомпонентных эпоксидных композиций холодного отверждения для изготовления препрегов, которые могут быть использованы в строительстве, а также в авиационной, машиностроительной, судостроительной и других областях техники. Предлагаемая эпоксидная композиция может применяться в качестве пропиточных и клеевых композиций и для защитных покрытий металлических и бетонных поверхностей. Эпоксидная композиция холодного отверждения содержит эпоксидную основу, включающую эпоксидную диановую смолу с молекулярной массой от 340 до 540, эпоксиуретановую смолу и отверждающую систему, содержащую ароматический амин и гетероциклическое соединение имидазольного типа. Изобретение позволяет создать высокотехнологичную, нетоксичную двухкомпонентную эпоксидную композицию с высокими прочностными характеристиками и жизнеспособностью не менее двух часов при 25°С, пригодную для использования в интервале температур от 0 до 60°С, отверждение композиции характеризуется незначительным экзотермическим эффектом. 5 з.п. ф-лы, 3 табл., 16 пр.

Изобретение относится к области создания двухкомпонентных эпоксидных композиций холодного отверждения для изготовления препрегов, которые могут быть использованы в строительстве, а также в авиационной, машиностроительной, судостроительной и других областях техники. Кроме того, предлагаемая эпоксидная композиция может применяться в качестве пропиточных и клеевых композиций и для защитных покрытий металлических и бетонных поверхностей.

Известна эпоксидная композиция для стеклопластиков, способная к холодному отверждению, представляющая собой продукт взаимодействия алифатической эпоксидной смолы с изоцианатом и отвердителем - алифатическим этиленовым полиамином (А.с. СССР №749869).

Данная композиция характеризуется высокой адгезией, эластичностью и устойчивостью к физико-механическим нагрузкам. Однако эта композиция с отвердителем на основе алифатических полиаминов обладает следующими недостатками:

- высокая токсичность, обусловленная тем, что отвердитель является легко летучим компонентом. Композиция обладает резким неприятным запахом;

- способность отвердителя к карбонизации, т.е. взаимодействию с углекислотой воздуха, в результате чего образуются соли карбаминовой кислоты (карбаматы). В процессе холодного отверждения композиции эта побочная реакция может приводить к появлению на поверхности отвержденного полимерного композиционного материала нежелательных белесых разводов, маслянистых пятен, остаточной липкости и т.п. и ухудшить физико-механические характеристики;

- высокая исходная вязкость композиции, которая затрудняет пропитку наполнителя и требует повышенных усилий при контактном формовании конструкции;

- невысокий уровень теплостойкости - температура стеклования композиции холодного отверждения не превышает 42°C. Использование такой композиции в контакте с наполнителем, который обычно содержит различные добавки, снижающие температуру стеклования, может привести к полной потере несущей способности полимерной конструкции вследствие размягчения при нагреве прямыми солнечными лучами;

- невозможность отверждения данной композиции при пониженных температурах. Начало реакции отверждения композиции происходит только при 15°C, что ограничивает ее использование в холодное время года вне помещений.

Известна двухкомпонентная клеевая эпоксидная композиция холодного отверждения, включающая эпоксидную диановую смолу, олигоуретандиэпоксид и комплексную отверждающую систему: аминофенольный отвердитель с соотвердителем - глицидиловым производным нафталинсульфонамида (А.с. СССР №1808852).

Данная эпоксидная композиция на основе отвердителя класса аминофенолов характеризуется хорошими адгезионными свойствами, меньшей склонностью к реакции карбонизации и способностью отверждаться при умеренно низких температурах.

Однако реакция отверждения данной композиции сопровождается сильным экзотермическим эффектом, в результате чего смесь может саморазогреваться до температуры, превышающей 80-100°C. Такой саморазогрев может не только превышать температуру термической деструкции матрицы связующего, но и приводить к самовозгоранию. В связи с этим отверждение этой композиции возможно производить только в тонких слоях, что ограничивает ее применение в толстостенных крупногабаритных изделиях.

Другими недостатками этой композиции являются: низкий показатель жизнеспособности, высокая исходная вязкость и невысокие термомеханические характеристики, а также низкий показатель предела прочности при разрыве отвержденных образцов (порядка 19 МПа).

Наиболее близким техническим решением по совокупности существенных признаков и достигаемому техническому результату, принятым за прототип, является двухкомпонентная эпоксидная композиция холодного отверждения, включающая эпоксидную основу - продукт совмещения 85% диглицидилового эфира бисфенола А (эпоксидная диановая смола) с 15% триметилолпропанатриглицидилового эфира (алифатическая эпоксидная смола) и комплексную аминную отверждающую систему, содержащую 95% фенольного основания Манниха (аминометилфенол) и 5% трис-(2,4,6-диметиламинометил)фенола (аминофенол), в стехиометриическом соотношении эпоксидных и аминных групп (ЕР 1475412).

Данная эпоксидная композиция используется в качестве связующего для изготовления конструкций из полимерных композиционных материалов на основе волокнистых наполнителей, используемых в строительной индустрии, а также для проведения ремонтно-восстановительных работ уже существующих строительных объектов.

Авторы изобретения характеризуют композицию способностью к активному отверждению при температуре от 5°C до 60°C и возможностью получения отвержденных полимерных матриц с высокими показателями температуры стеклования (Tg выше 80°C). Наличие таких высоких термомеханических характеристик у эпоксидных композиций, отверждающихся без подвода дополнительного тепла, можно объяснить тем, что реакция отверждения сопровождается значительным экзотермическим эффектом.

Наличие большого экзотермического эффекта значительно уменьшает время желатинизации композиции, которое составляет 20 минут и приводит к снижению технологической жизнеспособности, делая при этом экономически невыгодным ее использование вне лабораторных условий.

Сильная экзотермия реакции отверждения также приводит к тому, что система отверждается неравномерно, что препятствует полной конверсии эпоксидных групп. Этим можно объяснить невысокие показатели предела прочности при растяжении отвержденных образцов композиции, которые характеризуются значениями не выше 31 МПа.

Используемый комплексный отвердитель в этой композиции содержит соединения, относящихся к классу фенольных оснований Манниха (аминометилфенол) и аминофенолов, которые являются едкими и токсичными веществами, что ухудшает условия и увеличивает степень опасности работы с данным составом.

Технической задачей данного изобретения является создание высокотехнологичной, нетоксичной двухкомпонентной эпоксидной композиции с высокой жизнеспособностью, отверждение которой не сопровождается значительным экзотермическим эффектом, обладающей невысокой начальной вязкостью, характеризующейся высокими прочностными и термомеханическими характеристиками и пригодной для использования в интервале температур от 0 до 60°C.

Поставленная задача достигается тем, что предлагается эпоксидная композиция холодного отверждения, содержащая эпоксидную основу, включающую эпоксидную диановую смолу и отверждающую систему на основе амина, отличающаяся тем, что эпоксидная основа дополнительно включает эпоксиуретановую смолу, эпоксидную диановую смолу используют с молекулярной массой от 340 до 540, а отверждающая система в качестве амина содержит ароматический амин и дополнительно включает гетероциклическое соединение имидазольного типа.

В качестве эпоксидной основы двухкомпонентной композиции используют смесь эпоксидной диановой смолы с молекулярной массой от 340 до 540 с эпоксиуретановой смолой при следующем соотношении компонентов, масс.%:

эпоксидная диановая смола 5,0-95,0
эпоксиуретановая смола 95,0-5,0

В качестве отверждающей системы используют смесь ароматического амина с гетероциклическим соединением имидазольного типа при следующем соотношении компонентов, масс.%:

ароматический амин 99,5-93,0
гетероциклическое соединение имидазольного типа 0,5-7,0

Эпоксидная композиция холодного отверждения может дополнительно содержать в составе отверждающей системы поверхностно-активное вещество неионогенного типа в количестве 0,1-5 мас.% от всей композиции.

Соотношение эпоксидной основы и отверждающей системы в конечной композиции составляет, масс.ч - 100:(40-55).

Для получения эпоксидной системы в качестве эпоксидной диановой смолы используют смолу с молекулярной массой от 340 до 540, например эпоксидные диановые смолы марок ЭД-22, ЭД-20, ЭД-16 (ГОСТ 10587-93).

Эпоксиуретановую смолу, входящую в состав эпоксидной системы, получают путем перемешивания при нагревании эпоксидной диановой смолы с молекулярной массой от 340 до 540 или смеси смол, например эпоксидные диановые смолы марок ЭД-22, ЭД-20, ЭД-16 (ГОСТ 10587-93), с полиизоцианатом, например полиизоцианат ПИЦ (ТУ 113-03-38-106-90), Суризон МЛ (ТУ 113-03-29-7-82), гексаметилендиизоцианат (ТУ 113-03-38-104-90) при стехиометрическом соотношении реакционных групп ОН:NCO от 1,0:0,1 до 1,0:1,0.

Для получения отверждающей системы в качестве отвердителя на основе ароматического амина могут быть использованы промышленно выпускаемые составы отвердителей, например отвердители марок ХТ-450/1, ХТ-450/2 (ТУ 2494-672-11131395-2010) или отвердитель марки МФБА (ТУ 6-05-241-224-79).

В качестве гетероциклического соединения имидазольного типа в составе отверждающей системы используется, например, имидазол (ТУ 6-09-08-1181-78), 2-метилимидазол (ТУ 6-09-10-1836-90) или бензимидазол (ТУ 6-09-08-1974-88), а в качестве неионогенного поверхностно-активного вещества, например, Неонол АФ 9-4, Неонол АФ 9-6 (ТУ 2483-077-5766801-98) или ПЭГ-200 (ТУ 2483-007-71150986-2006).

Авторами установлено, что использование в эпоксидной основе в качестве эпоксидной диановой смолы - эпоксидной диановой смолы с определенной молекулярной массой от 340 до 540 - дает возможность создавать композиции с низкой исходной вязкостью, что обеспечивает ее высокие технологические характеристики: хорошую смачиваемость, полную пропитываемость наполнителя и возможность изготовления качественного препрега без применения сложных технологических приемов.

Введение эпоксиуретановой смолы в композицию позволяет обеспечить достижение повышенных прочностных характеристик за счет введения в жесткую эпоксидную матрицу относительно подвижных уретановых групп путем модификации через боковую гидроксильную группу в цепи эпоксидного дианового олигомера, что приводит к повышению прочности без повышения хрупкости системы.

Отверждающая система благодаря используемому отвердителю на основе ароматического амина (аминобензола), в отличие от используемого в прототипе отвердителя на основе аминометилфенола и аминофенола, способствует получению технологичной малотоксичной композиции с повышенной жизнеспособностью, отверждение которой начинается при температуре окружающей среды от 0°C и не сопровождается избыточным экзотермическим эффектом. Этот комплекс технологических свойств обеспечивается особенностями строения используемого аминобензола. Это вещество по своей природе является малолетучим и не обладает раздражающим кожным воздействием. Используемый в прототипе отвердитель на основе аминометилфенола и аминофенола содержит три каталитически активные третичные аминогруппы, что значительно ускоряет процесс отверждения и делает его чрезвычайно экзотермичным, что уменьшает жизнеспособность системы и ухудшает ее технологичность. В предлагаемом варианте используется система с первичным ароматическим амином, который характеризуется меньшей реакционной способностью при температурах холодного отверждения, но начало реакции отверждения эпоксидной композиции активизируется уже при 0°C.

Использование гетероциклического соединения имидазольного типа вместе с ароматическим отвердителем позволяет увеличить термомеханические характеристики отвержденной системы за счет встраивания жесткого имидазольного цикла в полимерную сетку и придания ей дополнительной жесткости, возрастания величины статического сегмента, что сказывается на увеличении теплостойкости.

Дополнительное введение неионогенного поверхностно-активного вещества в количестве 0,1-5 масс.% ввиду снижения межфазного натяжения системы способствует более полной конверсии эпоксидных групп при отверждении связующего без подвода тепла.

Соотношения компонентов в эпоксидной основе и отверждающей системе подобраны экспериментальным путем. Соотношение эпоксидной основы и отверждающей системы 100:(40-55) масс.ч. позволяет добиться получения эпоксидных композиций холодного отверждения с наилучшим сочетанием технологических и физико-механических характеристик.

Получение эпоксидной основы

Пример 1

Для получения эпоксидной основы в чистый и сухой реактор с термостатируемой рубашкой и сливным штуцером, снабженный мешалкой серповидного типа для смешивания исходных веществ, загрузили 95 масс.% эпоксиуретановой смолы на основе эпоксидной диановой смолы с молекулярной массой не более 540 (марка ЭД-20) и полизоцианата (ПИЦ) при соотношении реакционных групп OH:NCO=1,0:0,1 и 5 масс.% эпоксидной диановой смолы с молекулярной массой не более 540 (марка ЭД-22). Включили мешалку и, перемешивая со скоростью (300±50) об/мин, нагрели до температуры (50±5)°C. Перемешивали при указанной температуре со скоростью (300±50) об/мин в течение не менее 60 мин.

Выключили мешалку и слили готовую смоляную составляющую через сливной штуцер в сухой, чистый барабан из белой жести.

Примеры 2-8

Изготовление эпоксидной основы выполняли аналогично примеру 1, но с другими компонентами и при соотношениях, приведенных в таблице 1.

Получение отверждающей системы

Пример 9

Для получения отверждающей системы в другой чистый и сухой реактор загрузили 99,5 масс.% аминного отвердителя ароматического типа (марка ХТ-450/1) и 0,5 масс.% гетероциклического соединения имидазольного типа (2-метилимидазол). Включили мешалку и перемешивали со скоростью (300±50) об/мин в течение не менее 30 мин при температуре (60±5)°C для совмещения компонентов. Выключили мешалку и слили готовую отверждающую систему композиции через сливной штуцер в сухую, чистую герметично закрывающуюся пластиковую канистру.

Примеры 10-16

Изготовление отверждающей системы выполняли аналогично примеру 9, но с другими компонентами и при соотношениях, приведенных в таблице 2.

В примерах №14-16 в состав отверждающей системы дополнительно включили поверхностно-активное вещество неионогенного типа.

Композицию готовили непосредственно перед применением путем смешивания эпоксидной основы и отверждающей системы в заданном соотношении.

В таблице 3 приведены составы композиций холодного отверждения (примеры 17-24) и сравнительные свойства заявляемой композиции и прототипа.

Как видно из указанной таблицы, предлагаемая полимерная композиция для производства препрегов имеет ряд преимуществ по сравнению с прототипом:

- так как процесс отверждения предложенной композиции начинается уже при 0°C в отличие от прототипа, отверждение которого происходит только при температуре 5°C, она пригодна для применения в холодное время года;

- реакция отверждения композиции сопровождается незначительным экзотермическим эффектом, что способствует увеличению времени желатинизации и обеспечивает повышенную технологическую жизнеспособность не менее 2-х часов у заявленной композиции, в сравнении с 20 минутами у прототипа;

- композиция обладает невысокой исходной вязкостью - 5-7 Па·с, в то время как композиция по прототипу характеризуется исходной вязкостью 20 Па·с;

- разработанная композиция обеспечивает высокие прочностные свойства отвержденной полимерной композиции 52-60 МПа, что в 1,5-2 раза превосходит прочность композиции по прототипу.

Предлагаемая композиция характеризуется высокими значениями температуры стеклования для композиций холодного отверждения Tg=57-73°C, что является верхней границей их теплостойкости, и обеспечивает сохранение прочностных характеристик ниже этого значения температуры.

Таблица 1
Рецептура композиций эпоксидной основы
Наименование показателей Примеры
1 2 3 4 5 6 7 8
Содержание эпоксидной диановой смолы: эпоксиуретановой смолы, масс.% 5:95 60:40 95:5 90:10 80:20 15:85 70:30 85:15
Молекулярная масса эпоксидной диановой смолы и марка смолы 540 ЭД-16 340
ЭД-22
430 ЭД-20 430
ЭД-20
340
ЭД-22
540 ЭД-16 340 ЭД-22 340 ЭД-22
Молекулярная масса эпоксидной диановой смолы и марка смолы, используемой при изготовлении эпоксиуретановой смолы 430 ЭД-20 430
ЭД-20
430 ЭД-20 380
Смесь ЭД-20/ЭД-22
480
Смесь ЭД-16/ЭД-22
340 ЭД-22 430 ЭД-20 340 ЭД-22
Марка полиизоцианата, используемого при изготовлении эпоксиуретановой смолы ПИЦ Гексаметилендиизо
цианат
ПИЦ ПИЦ Гексаметилендиизоцианат ПИЦ Суризон МЛ Суризон МЛ
Соотношение реакционных групп, использованное при изготовлении эпоксиуретановой смолы OH:NCO 1,0:0,1 1,0:0,1 1,0:0,5 1,0:1,0 1,0:0,2 1,0:0,4 1,0:0,3 1,0:0,7

Таблица 2
Рецептура композиций отверждающей системы
Наименование показателей Примеры
9 10 11 12 13 14 15 16
Содержание ароматического амина: соединения имидазольного типа, масс.% 99,5:0,5 98,0:2,0 93,0:7,0 96,0:4,0 95,5:4,5 98,5:1,5 99,0:1,0 95,0:5,0
Марка ароматического амина ХТ-450/1 МФБА ХТ-450/2 ХТ-450/1 МФБА ХТ-450/1 ХТ-450/2 ХТ-450/2
Марка соединения имидазольного типа 2-метилимидазол 2-метилимидазол Имида
зол
2-метилимидазол имидазол 2-метилимида
зол
2-метилимидазол 2-метилимида
зол
Марка неионогенного ПАВ - - - - - ПЭГ-200 Неонол АФ 9-6 Неонол АФ 9-4
Содержание ПАВ в отверждающей системе, масс, % от эпоксидной композиции - - - - - 5,0 0,1 1,0

Таблица 3
Сравнительные свойства заявляемой композиции и прототипа
Наименование показателей Прото
тип ЕР 1475412
Примеры
17 18 19 20 21 22 23 24
Соотношение компонентов эпоксидной основы и отверждающей системы, масс.ч. 100:40 100:40 100:43 100:44 100:45 100:45 100:47 100:55
Рецептура эпоксидной основы - Пример №1 Пример №2 Пример №3 Пример №4 Пример
№5
Пример №6 Пример
№7
Пример №8
Рецептура отверждающей системы - Пример №11 Пример №13 Пример №10 Пример №14 Пример №15 Пример №9 Пример №12 Пример №16
Температура начала реакции отверждения, °С 5 0 0 0 0 0 0 0 0
Время желатинизации при 25°С, ч 0,3 7 8 10 10 6 9 10 6
Технологическая жизнеспособность при 25°С, ч Менее 0,3 Не менее 2 Не менее 2 Не менее 2 Не менее 2 Не менее 2 Не менее 2 Не менее 2 Не менее 2
Экзотермичность реакции отверждения Высо
кая
Невысо
кая
Невысо
кая
Невысо
кая
Невысо
кая
Невысокая Невысо
кая
Невысокая Невысо
кая
Исходная вязкость композиции при 25°С, Па.с 20 7 7 6 5 6 5 6 5
Предел прочности при растяжении, МПа 31 52 54 56 55 58 60 54 53
Температура стеклования композиции через 7 суток при температуре 25°С, °С 80 73 68 65 67 59 57 67 71

Эпоксидная композиция может быть использована в строительстве, авиационной, машиностроительной, оборонной технике в качестве пропиточной и клеевой композиции, для защитных покрытий металлических и бетонных поверхностей, для проведения ремонтных работ в полевых условиях.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 369.
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
Показаны записи 291-300 из 350.
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a38

Эпоксидное клеевое связующее, пленочный клей и клеевой препрег на его основе

Группа изобретений относится к клеевой промышленности и может быть использована для склеивания полимерных композиционных материалов, слоистых и сотовых конструкций, сэндвич-панелей, для соединения металлов. Эпоксидное клеевое связующее включает компоненты при следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002686919
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.4a4d

Эпоксидное клеевое связующее и пленочный клей на его основе

Группа изобретений относится к клеевой промышленности и может быть использована для изготовления деталей из полимерных композиционных материалов, слоистых и сотовых конструкций, для создания клеевых соединений металлических материалов. Эпоксидное клеевое связующее содержит компоненты при...
Тип: Изобретение
Номер охранного документа: 0002686917
Дата охранного документа: 06.05.2019
+ добавить свой РИД