×
20.04.2013
216.012.35ff

СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ ДЕФОРМИРУЕМЫХ МАГНИЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

№ охранного документа
0002479376
Дата охранного документа
20.04.2013
Аннотация: Изобретение относится к области металлургии. Индукционную плавку шихтовых материалов ведут в стальном тигле в газовой среде, состоящей из смеси аргона и фреона 12 в соотношении 4:(1-2). Расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 минут. Образующийся в результате реакции фреона с магнием хлорид магния (MgCl) растворяется в магниевом расплаве, а при охлаждении выделяется в виде тонкодисперсных частиц, служащих центрами кристаллизации. Обеспечивается получение слитков с гарантированно мелкокристаллической структурой и исключение «флюсовой» коррозии металла. 1 ил., 5 пр.
Основные результаты: Способ производства слитков деформируемых магниевых сплавов, включающий индукционную плавку шихтовых материалов в стальном тигле в газовой среде в виде смеси аргона и фреона 12 в соотношении 4:(1-2) и разливку металла в кристаллизатор, отличающийся тем, что расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 мин.

Изобретение относится к области металлургии и может быть использовано в производстве слитков из сплавов системы магний - алюминий - цинк, магний - цинк - РЗМ, предназначенных, например, для изготовления деталей разгонных блоков космических аппаратов.

Известен способ производства слитков магниевых сплавов, являющийся аналогом и включающий плавку шихтовых материалов под карналлитовым флюсом, состоящим из 60 атом.% MgCl2 и 40 атом.% CaCl2 (Бондарев Б.И. «Плавка и литье магниевых деформируемых сплавов», Металлургиздат, 1973, 370 с.). Применение такого флюса позволяет получать слитки с требуемой мелкокристаллической структурой.

Однако магниевые деформируемые сплавы при применении карналлитового флюса склонны к коррозии, что снижает качество и срок службы деталей, изготовленных из таких сплавов. Это связано с тем, что наряду с дисперсными частицами хлористого магния, которые служат центрами кристаллизации, в металлический расплав попадает большое количество крупных частиц этого материала, приводящих к «флюсовой» коррозии сплавов.

Известен способ производства слитков магниевых сплавов, принятый в данном случае за прототип (патент на изобретение №2190679 от 23.05.2002 г. «Способ производства слитков из магниевых сплавов»). Описанный способ производства позволяет исключить флюсовую коррозию за счет ведения плавки в среде смеси газов аргона и фреона при их соотношении 4:(1-2). В результате химической реакции между металлом и фреоном образуется защитная пленка, состоящая из фторида и хлорида магния, которая препятствует испарению сплава и окислению металла.

Однако слитки деформируемых магниевых сплавов системы магний - алюминий - цинк и магний - цинк - РЗМ, выплавленные по этому способу, обладают крупнокристаллической структурой, что приводит к снижению технологической пластичности и образованию трещин при прокатке и прессовании слитков. Это связано с тем, что принятые режимы приготовления сплавов не позволяют в полной мере использовать модифицирующую способность хлорида магния применительно к деформируемым магниевым сплавам, в частности к сплавам названных систем.

У деформируемых магниевых сплавов и у хлорида магния однотипная гексогональная решетка с близкими параметрами. Поэтому зародыши хлорида магния и включения, покрытые хлоридом магния, при охлаждении расплава до температуры, меньшей или равной температуре ликвидуса магниевых сплавов, становятся центрами кристаллизации. Чем больше центров кристаллизации, тем меньше размер зерен твердого раствора деформируемых магниевых сплавов. При этом микрочастицы хлорида магния, служившие центрами кристаллизации настолько малы, что практически не влияют на коррозионную стойкость деформируемых магниевых сплавов, к тому же они находятся в центре зерен сплава и недоступны воздействию атмосферы.

Результатом предлагаемого технического решения является получение слитков из деформируемых магниевых сплавов, не подверженных флюсовой коррозии и гарантированно имеющих мелкокристаллическую структуру.

Указанный результат достигается тем, что в предлагаемом способе производства слитков деформируемых магниевых сплавов, включающем индукционную плавку шихтовых материалов в стальном тигле в газовой среде в виде смеси аргона и фреона 12 в соотношении 4:(1-2) и разливку металла в кристаллизатор, расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 минут.

Фреон 12 взаимодействует с расплавленным металлом, образуя на его поверхности жидкую защитную пленку из фтористого и хлористого магния. При повышении температуры расплава до 800°C и выше хлор из пленки переходит в металл, растворяясь в нем. При охлаждении расплава, происходящего в процессе отливки слитков, растворимость хлора в металлическом расплаве уменьшается, и он частично переходит обратно в пленку, но в большей части образует в расплаве самостоятельные микрокапли хлорида магния, либо образует на присутствующих в расплаве включениях жидкие микропленки. При понижении температуры расплава ниже 714°C микрокапли и пленки хлорида магния кристаллизуются, образуется большое количество центров кристаллизации, что и обеспечивает в итоге формирование мелкокристаллической структуры слитков магниевых сплавов, отливаемых предлагаемым способом.

Количество центров кристаллизации определяется концентрацией хлора, растворившегося в металле в процессе выдержки расплава при температуре, равной или большей 800°C. С ростом температуры растворимость хлора в магниевых сплавах растет. Однако верхний предел температуры ограничен 830°C, т.к. при более высоких температурах расплав активно насыщается железом за счет взаимодействия магниевого расплава со стенками тигля. Железо является вредной примесью для деформированных магниевых сплавов, повышенное его содержание приводит к снижению пластических и коррозионных характеристик изделий. Таким образом перегревать расплав выше температуры 830°C не целесообразно.

Минимальное время выдержки при температуре расплава 800-830°C определяется экспериментально и зависит от допустимого размера зерна в структуре сплава, при которой не образуется трещин в процессе деформации слитка. Увеличение же времени выдержки более 40 минут приводит к образованию излишне большого количества частиц хлорида магния. В результате за счет коагуляции происходит увеличение их размеров, такие частицы не могут служить центрами кристаллизации, а появляются в структуре как инородные включения, что, в конечном счете, приводит к «флюсовой» коррозии. Таким образом, предлагаемый способ производства слитков из деформируемых магниевых сплавов систем Mg-Al-Zn и Mg-Zn-РЗМ позволяет:

- получать слитки с гарантированно мелкокристаллической структурой;

- исключить «флюсовую» коррозию металла.

Примеры осуществления способа.

1. Для приготовления сплава МА2-1пч (система Mg-Al-Zn) была взята шихта следующего состава: первичный магний МГ95, лигатура магний-марганец ММ2ч, алюминий первичный А99, цинк Ц0А. Шихту укладывали в стальной тигель индукционной печи и нагревали до 830°C в защитной газовой среде смеси аргона и фреона-12 в соотношении 4:1 (по объему), сплав выдержали 20 мин. Затем отобрали пробу для экспресс-контроля и оценки размера зерна по излому. Размер зерна по излому соответствовал требованиям эталона, поэтому была проведена отливка слитка диаметром 370 мм методом полунепрерывного литья. Для сдаточного контроля был проведен контроль слитка по излому темплетов. Излом темплетов показал соответствие размера зерна эталону годности, химический состав сплава соответствовал ГОСТ 14957-76 (Рис.1а).

2. Сплав готовили по п.1 с той разницей, что шихту нагревали до 795°C. Отобранная для оценки размера зерна по излому проба показала несоответствие требованиям эталона (Рис.1б).

3. Сплав готовили по п.1 с разницей в том, что шихту нагревали до 835°C. Проба, отобранная для оценки размера зерна по излому, показала соответствие требованиям эталона годности (Рис.1а). Однако химический анализ показал увеличение содержания железа до недопустимого уровня 0,14% (против 0,005% по ГОСТ 14957-76).

4. Сплав МА15 (система Mg-Al-Zn) готовили из шихты следующего состава: первичный магний МГ95, лигатура магний-марганец ММ2ч, алюминий первичный А99, цинк Ц0А. Шихту в стальном тигле индукционной печи нагревали до 800°C в защитной среде аргона и фреона-12 в соотношении 4:1 (по объему), сплав выдержали 40 мин. Отобрали пробу на экспресс-анализ и оценку размера зерна по излому. Размер зерна по излому соответствовал требованиям эталона, химический состав сплава соответствовал ГОСТ 14957-76. Полунепрерывным способом был отлит слиток диаметром 460 мм. Для сдаточного контроля был проведен контроль слитка по излому темплетов. Излом темплетов показал соответствие размера зерна эталону годности (Рис.1а).

5. Сплав готовили по п.4 с той разницей, что выдержку сплава в печи осуществляли в течение 18 мин при 800°C. Размер зерна по излому в отобранной пробе не соответствовал требованиям эталона. При той же температуре печи сплав дополнительно выдержали в течение 10 мин. Повторно отобранная проба показала соответствие размера зерна эталону годности. Полунепрерывным методом отлили слиток диаметром 370 мм. Излом темплетов показал соответствие размера зерна эталону годности (Рис.1а).

Способ производства слитков деформируемых магниевых сплавов, включающий индукционную плавку шихтовых материалов в стальном тигле в газовой среде в виде смеси аргона и фреона 12 в соотношении 4:(1-2) и разливку металла в кристаллизатор, отличающийся тем, что расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40 мин.
СПОСОБ ПРОИЗВОДСТВА СЛИТКОВ ДЕФОРМИРУЕМЫХ МАГНИЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 71-72 из 72.
12.04.2023
№223.018.43cd

Деформируемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде прессованных прутков, в качестве конструкционного материала для токопроводящих и теплопроводящих...
Тип: Изобретение
Номер охранного документа: 0002793664
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4e9e

Теплоизолирующий колпак печи газостата

Предлагаемое изобретение относится к области порошковой металлургии, в частности к оборудованию для изостатического прессования порошковых материалов, заключенных газостат. Теплоизолирующий колпак печи газостата содержит корпус, выполненный в виде муфеля и внешней оболочки с боковыми и верхними...
Тип: Изобретение
Номер охранного документа: 0002793353
Дата охранного документа: 31.03.2023
Показаны записи 51-55 из 55.
26.08.2017
№217.015.dac8

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002623932
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e7cb

Способ получения порошков из жаропрочных никелевых сплавов

Изобретение относится к получению порошков жаропрочных никелевых сплавов. Способ включает плавление торца вращающейся цилиндрической литой заготовки потоком плазмы с обеспечением центробежного распыления расплава и образованием частиц затвердевающих в микрослитки при полете в атмосфере холодной...
Тип: Изобретение
Номер охранного документа: 0002627137
Дата охранного документа: 03.08.2017
29.12.2017
№217.015.fb9c

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002639903
Дата охранного документа: 25.12.2017
04.04.2018
№218.016.31a9

Способ получения металлического порошка методом центробежного распыления, устройство для осуществления способа

Изобретение относится к получению металлического порошка центробежным распылением заготовки. Способ включает подачу заготовки во вращающийся распылительный узел и в зону плавления, плавку заготовки плазменной струей, направленной на ее торец, с обеспечением центробежного распыления посредством...
Тип: Изобретение
Номер охранного документа: 0002645169
Дата охранного документа: 16.02.2018
27.12.2018
№218.016.ac3f

Порошковые жаропрочные сплавы для изготовления биметаллических изделий и составной диск, изготовленный из этих сплавов

Изобретение относится к порошковой металлургии, в частности к изготовлению высоконагруженных составных дисков с функционально градиентными свойствами для газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в условиях градиента температуры и имеющих механические свойства,...
Тип: Изобретение
Номер охранного документа: 0002676121
Дата охранного документа: 26.12.2018
+ добавить свой РИД