×
10.04.2013
216.012.3480

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПОГРУЖЕНИЯ ПРИВОДНЯЮЩЕГОСЯ ОБЪЕКТА

Вид РИД

Изобретение

№ охранного документа
0002478983
Дата охранного документа
10.04.2013
Аннотация: Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием отраженных от объекта эхосигналов гидролокатором, измерение собственной скорости носителя гидролокатора, определение дистанции D до приводняющегося объекта в момент прихода отраженного от него эхосигнала, вызванного первой посылкой зондирующего сигнала, излученного в момент времени t, определение дистанции D в момент окончания эхосигнала, вызванного n-й посылкой зондирующего сигнала, излученного в момент времени t+nT, и определяют глубину погружения приводняющегося объекта в момент времени t+nT и скорость погружения объекта. Технический результат: обеспечение возможности дистанционного измерения глубины погружения приводняющегося объекта и измерения скорости погружения объекта относительно горизонта движения носителя. 1 ил.
Основные результаты: Способ определения глубины погружения объекта, содержащий излучение зондирующих сигналов гидролокатором, прием отраженных от объекта эхосигналов гидролокатором, измерение собственной скорости носителя гидролокатора и измерение дистанции до объекта, отличающийся тем, что определяют дистанцию D до приводняющегося объекта в момент прихода отраженного от него эхосигнала, вызванного первой посылкой зондирующего сигнала, излученного в момент времени t, определяют дистанцию D в момент окончания эхосигнала, вызванного n-й посылкой зондирующего сигнала, излученного в момент времени t+nT, а глубину погружения приводняющегося объекта в момент времени t+nT определяют по формуле ,где H - глубина, измеренная в момент времени t+nT; Т - интервал времени между посылками зондирующих сигналов; V - скорость движения носителя гидролокатора, а скорость погружения объекта определяют по формулеV=(H-H)/nT.

Изобретение относится к области гидроакустики и может быть использовано для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе, относительно горизонта движения носителя.

Современное техническое развитие гидроакустической техники формирует необходимость дистанционного обнаружения приводняющихся объектов. Такими объектами могут быть сбрасываемые с самолетов или вертолетов гидроакустические буи, сбрасываемые необитаемые подвижные подводные аппараты различного назначения, устанавливаемые подводные стационарные маяки и др. Иногда эти постановки бывают легальными и согласованными, а в большинстве случаев противоправными, что влечет за собой необходимость обнаруживать нелегальную установку и ликвидировать ее. Именно этим объясняется необходимость обнаружения приводняющихся объектов и измерения параметров их движения.

Известен метод обнаружения объекта, находящегося вблизи подвижного носителя в водной среде, с использованием гидролокатора, установленного на этом носителе. Метод позволяют обнаруживать объект, измерять до него дистанцию и измерять направление на объект (Яковлев А.Н., Каблов Г.П. Гидролокаторы ближнего действия. Л.: Судостроение, 1983 г.).

Этот способ содержит излучение зондирующего сигнала, измерение времени задержки между излученным сигналом и принятым эхосигналом от объекта, определение дистанции до обнаруженного объекта по величине временной задержки и известной скорости распространения звука и определение направления прихода отраженного сигнала в горизонтальном направлении.

Однако способ не позволяют определить глубину погружения объекта.

Известен метод определения глубины погружения цели с использованием гидролокатора, описанный в работе (А.П.Сташкевич, «Акустика океана», Судостроение, Ленинград, 1966 г., стр.263). Способ содержит измерение дистанции до цели и угла, определяемого направлением характеристики направленности в вертикальной плоскости.

Способ содержит следующее операции:

- излучение зондирующего сигнала в момент времени t1,

- прием эхосигнала от объекта,

- измерение временной задержки между моментами излучения зондирующего сигнала и приема эхосигнала,

- определение на момент времени t1 дистанции D1 до объекта по величине временной задержки и известной скорости распространения звука,

- измерение направления на цель в вертикальной плоскости;

- определение глубины погружения по формуле Н=DSin(α),

где D - измеренная дистанция до цели, α - угол между направлением движения носителя и направлением на цель в вертикальной плоскости.

Известен «Способ и устройство определения глубины подводного объекта» по патенту Японии №2708109 B2 от 04.02.98 г. по кл. C01S 15/10, который основан на том же принципе, что и предыдущий способ, но определение направления производится с использованием сканирования характеристики направленности в вертикальной плоскости при излучении зондирующего сигнала узкой характеристикой направленности.

Наиболее близким аналогом является способ определения глубины погружения объекта по патенту №2350983.

Способ содержит излучение зондирующего сигнала, прием эхосигнала и измерение дистанции D1 на момент времени t1. В момент времени t1+Δt повторяют процедуру измерения дистанции до объекта, определяют дистанцию D2 до объекта в момент времени t1+Δt, определяют скорость движения носителя Vсоб и глубину погружения объекта относительно горизонта движения носителя определяют по формуле

, где

, где

D1 - дистанция до объекта в момент времени t1,

D - дистанция до объекта на момент времени t1+Δt,

Н - глубина погружения носителя гидролокатора,

Vсоб - скорость перемещения носителя гидролокатора.

Недостатком данного способа является то, что с его помощью невозможно определить глубину и скорость погружения объекта, падающего в воду, поскольку способ предназначен для определения глубины погружения неподвижного объекта или объекта, перемещающегося с малой скоростью. В некоторых задачах практического использования гидролокаторов ближнего действия возникает необходимость дистанционного определения глубины и скорости перемещения приводняющегося (падающего и погружающегося в воду) объекта. В этом случае вертикальная и горизонтальная скорости перемещения могут быть значительными. Взаимное перемещение носителя гидролокатора и переменная глубина падающего в воде объекта не позволяют использовать способ-прототип при измерении глубины погружения приводняющегося объекта.

Техническим результатом предложенного способа является обеспечение возможности дистанционного измерения глубины погружения приводняющегося объекта и измерения скорости погружения объекта относительно горизонта движения носителя.

Указанный технический результат достигается тем, что в способ измерения глубины погружения объекта, содержащий излучение зондирующих сигналов гидролокатором, прием отраженных от объекта эхосигналов гидролокатором, измерение собственной скорости носителя гидролокатора и измерение дистанции до объекта, введены новые признаки, а именно: определяют дистанцию D1 до приводняющегося объекта в момент прихода отраженного от него эхосигнала, вызванного первой посылкой зондирующего сигнала, излученного в момент времени t1, определяют дистанцию Dn в момент окончания эхосигнала, вызванного n-й посылкой зондирующего сигнала, излученного в момент времени t1+nT, а глубину погружения приводняющегося объекта в момент времени t1+nT определяют по формуле , где Hn - глубина, измеренная в момент времени t1+nT; Т - интервал времени между посылками зондирующих сигналов; V - скорость движения носителя гидролокатора, а скорость погружения объекта определяют по формуле:

Vn=(Hn-H1)/nT.

Поясним достижения указанного технического результата.

Приводняющийся объект, как правило, имеет большую скорость падения и отрицательную плавучесть, поэтому при падении в воду он погружается и образует воздушную каверну, которая увлекается за падающим объектом. Таким образом, падающий объект погружается в воздушном мешке, окруженный пеленой пузырей. Сам падающий объект и пелена пузырей являются хорошими отражателями. При облучении зондирующими сигналами возникает отражение от пелены пузырей и от корпуса. Протяженный по длительности отраженный эхосигнал будет иметь начало, которое определяет минимальную дистанцию до приводняющегося объекта в момент его приводнения либо начала каверны, которая образуется при приводнении. Конец эхосигнала будет определять положения металлического корпуса, который погружается быстрее, чем пелена пузырей, следующая за ним. Начало первого эхосигнала определяет дистанцию приводнения, относительно которой начинается измерение. По второму и последующим эхосигналам определяется положение корпуса приводняющегося объекта, что фиксируется по положению конца эхосигнала, поскольку он расположен по дистанции дальше начала эхосигнала, которое соответствует точке приводнения. Лучшие результаты могут быть получены в том случае, если фиксируется момент приводнения. Если момент приводнения пропущен, то все равно можно проводить оценку глубины, но при этом будет иметь место смещение оценки глубины в сторону уменьшения. На оценку скорости приводняющегося объекта при его движении в воде отсутствие дистанции точного приводнения не скажется, поскольку скорость определяется разностью проходимого пути объектом при погружении. Процесс погружения приводняющегося объекта является кратковременным и зависит от веса, скорости падения и парусности объекта, что в момент обнаружения не известно. Поэтому представляет интерес определение скорости погружения и максимальной глубины погружения. По каждому зондирующему сигналу определяется глубина погружения в известное время излучения зондирующего сигнала и скорость погружения в это же время.

Сущность изобретения поясняется фиг.1, на которой приведена блок-схема устройства, реализующего способ.

Устройство, реализующее данный способ, содержит гидролокатор 1 ближнего действия, соединенный через блок 2 измерения дистанции в момент прихода эхосигнала с первым входом вычислителя 5, второй вход которого соединен с выходом блока 6 измерения собственной скорости носителя. Второй выход гидролокатора через блок 3 измерения дистанции в момент окончания эхосигнала соединен с третьим входом вычислителя 5, а четвертый вход вычислителя 5 соединен с выходом блока 4 управления, который связан двухсторонней связью с третьим выходом гидролокатора. Второй вход блока управления 4 соединен со вторым выходом блока 3 измерения дистанции в момент окончания эхосигнала.

Блок 2 является известным устройством, которое формирует порог измерения и определяет момент начала эхосигнала от приводняющегося объекта. Вопросы формирования порога и определения временного положения начала эхосигнала достаточно подробно рассмотрены в работе Б.Н.Митяшев. «Определение временного положения импульса при наличии помех». Сов. Радио, М., 1962 г.

Измеритель собственной скорости является известным устройством, которое используется в прототипе, и достаточно подробно рассмотрен в работе Ю.А.Корякин, С.А.Смирнов, Г.В.Яковлев. «Корабельная гидроакустическая техника». Санкт Петербург, Наука, 2004 г., стр.99.

Блок 5 может быть реализован на спецпроцессоре, который выполняют базовые алгоритмы обработки гидроакустических сигналов при работе в реальном времени с использованием аппаратных решений и жесткой логики вычислений (Ю.А. Корякин, С.А. Смирнов, Г.В. Яковлев. Корабельная гидроакустическая техника СПб.: Наука, 2004 г. Стр.278-297).

Описание способа целесообразно совместить с описанием работы реализующего способ устройства. С блока управления 4 поступает сигнал в гидролокатор 1 на формирование и излучение зондирующего сигнала. Эхосигнал, отраженный от приводняющегося объекта, принимается гидролокатором, обрабатывается и поступает на блок 2 измерения дистанции в момент начала эхосигнала. С выхода блока 2 измеренное значение временного положения начала эхосигнала, что соответствует дистанции приводнения, поступает в вычислитель 5. По команде с блока 4 управления формируется последующий зондирующий сигнал, который излучается гидролокатором 1, принимается последующий эхосигнал, обрабатывается гидролокатором и подается на блок 3 измерителя времени окончания эхосигнала, что соответствует дистанции до корпуса падающего объекта. На второй вход вычислителя 5 поступает с блока 6 гидроакустического измерителя собственной скорости оценка собственной скорости. С блока 4 управления в вычислитель 5 поступает время каждого зондирующего сигнала. Точность измерения глубины погружения определяется временем измерения дистанции и точностью измерения собственной скорости движения носителя. Как правило, точность измерения дистанции определяется разрешающей способностью используемого зондирующего сигнала и составляет величину порядка 1-го метра. Точность измерения собственной скорости на средних скоростях движения не превышает 0,2-0,5 узла. Отсюда следует, что точность измерения глубины погружения на дистанциях порядка 2-х километров будет находиться в пределах ±20% от измеряемой глубины. Скорость погружения объекта может достигать значительной величины, поскольку объект приводняется, имея значительную начальную скорость, определяемую массой объекта и высотой падения, поэтому скорость перемещения объекта в воде будет существенно больше собственной скорости движения и за время между зондирующими сигналами объект пройдет значительное расстояние, которое можно измерить. Для гидролокаторов ближнего действия характерно использование сигналов короткой длительности либо сложных сигналов, обладающих хорошей разрешающей способностью по дистанции. Дальность действия гидролокатора ближнего действия ограничивается дистанциями нескольких километров. Как правило, на этих дистанциях многолучевое распространение не оказывает существенного влияния на точность и однозначность полученных оценок. Таким образом, предложенный способ позволяет провести измерение глубины погружения приводняющегося объекта относительно горизонта движения носителя, на котором установлен гидролокатор. Это позволяет считать заявленный технический результат достигнутым.

Способ определения глубины погружения объекта, содержащий излучение зондирующих сигналов гидролокатором, прием отраженных от объекта эхосигналов гидролокатором, измерение собственной скорости носителя гидролокатора и измерение дистанции до объекта, отличающийся тем, что определяют дистанцию D до приводняющегося объекта в момент прихода отраженного от него эхосигнала, вызванного первой посылкой зондирующего сигнала, излученного в момент времени t, определяют дистанцию D в момент окончания эхосигнала, вызванного n-й посылкой зондирующего сигнала, излученного в момент времени t+nT, а глубину погружения приводняющегося объекта в момент времени t+nT определяют по формуле ,где H - глубина, измеренная в момент времени t+nT; Т - интервал времени между посылками зондирующих сигналов; V - скорость движения носителя гидролокатора, а скорость погружения объекта определяют по формулеV=(H-H)/nT.
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПОГРУЖЕНИЯ ПРИВОДНЯЮЩЕГОСЯ ОБЪЕКТА
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПОГРУЖЕНИЯ ПРИВОДНЯЮЩЕГОСЯ ОБЪЕКТА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 137.
29.05.2019
№219.017.6829

Способ производства литой мишени для магнетронного распыления из сплава на основе молибдена

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях. Заявлены способ производства литой мишени...
Тип: Изобретение
Номер охранного документа: 0002454484
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.682a

Способ производства литой мишени из сплава на основе тантала для магнетронного распыления

Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к изготовлению интегральных схем и тонкопленочных конденсаторов на основе тантала и его сплавов. Заявлены способ производства литой мишени для магнетронного распыления...
Тип: Изобретение
Номер охранного документа: 0002454483
Дата охранного документа: 27.06.2012
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7db1

Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454481
Дата охранного документа: 27.06.2012
09.06.2019
№219.017.7db3

Способ получения составной мишени для распыления из сплава вольфрам-титан-рений

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454482
Дата охранного документа: 27.06.2012
19.07.2019
№219.017.b631

Способ получения кристаллов cdas

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы CdAs получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель...
Тип: Изобретение
Номер охранного документа: 0002694768
Дата охранного документа: 16.07.2019
17.08.2019
№219.017.c102

Детектор субтерагерцового излучения на основе графена

Изобретение относится к области детекторов электромагнитного излучения в терагерцовом диапазоне частот с использованием нелинейного плазменного отклика двумерной электронной системы. Сущность изобретения: детектор на основе графена, содержащий нелинейный элемент на наноструктуре с двумерной...
Тип: Изобретение
Номер охранного документа: 0002697568
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
03.10.2019
№219.017.d196

Способ изготовления образцов фуллерена с для спектроскопии

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C в полированную поверхность бромида калия. Способ...
Тип: Изобретение
Номер охранного документа: 0002701823
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1c0

Искусственный эритроцинкит

Изобретение относится к искусственным ювелирным кристаллам. Предлагается искусственный эритроцинкит, имеющий в своем составе сульфид цинка, сульфид марганца и сульфид алюминия при следующем соотношении компонентов, мас.%: сульфид алюминия AlS - 0,001-0,01, сульфид марганца MnS - 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002701822
Дата охранного документа: 01.10.2019
Показаны записи 91-100 из 104.
06.07.2018
№218.016.6d32

Способ классификации эхо-сигнала гидролокатора

Настоящее изобретение относится к области гидроакустики и может быть использовано для обнаружения и классификации эхосигналов от объектов, при применении зондирующих сигналов средней длительности. Использование предлагаемого способа позволяет обнаруживать и классифицировать объект по одному...
Тип: Изобретение
Номер охранного документа: 0002660219
Дата охранного документа: 05.07.2018
13.12.2018
№218.016.a5e5

Гидролокационный способ обнаружения объекта и измерения его параметров

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхо-сигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и способ обнаружения объекта и измерения параметров содержит излучение зондирующего сложного...
Тип: Изобретение
Номер охранного документа: 0002674552
Дата охранного документа: 11.12.2018
19.04.2019
№219.017.344b

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Техническим результатом изобретения является обеспечение автоматической классификации объекта. Для этого осуществляют излучение...
Тип: Изобретение
Номер охранного документа: 0002461020
Дата охранного документа: 10.09.2012
09.05.2019
№219.017.5089

Способ классификации эхо-сигнала гидролокатора

Использование: для построения систем классификации объектов, обнаруженных при работе в режиме гидролокации. Сущность: в способе обнаружения эхосигнала гидролокатора производят проведение спектрального анализа полученных наборов дискретизированных отсчетов, по каждому набору дискретизированных...
Тип: Изобретение
Номер охранного документа: 0002466419
Дата охранного документа: 10.11.2012
02.07.2019
№219.017.a311

Гидроакустический способ определения параметров цели при использовании взрывного сигнала с беспроводной системой связи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения эхо-сигнала от объекта, измерения параметров обнаруженного объекта и его классификации при использовании взрывных сигналов. Техническим результатом при использовании предлагаемого способа...
Тип: Изобретение
Номер охранного документа: 0002692841
Дата охранного документа: 28.06.2019
13.07.2019
№219.017.b340

Способ обработки гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации различного назначения. Способ обработки гидролокационной информации, содержит излучение сигнала, прием отраженного эхосигнала сформированным веером статических...
Тип: Изобретение
Номер охранного документа: 0002694269
Дата охранного документа: 11.07.2019
19.07.2019
№219.017.b660

Способ обнаружения и определения дистанции с помощью взрывного сигнала в гидроакустической локальной сетевой системе связи

Изобретение относится к области гидроакустики и может быть использовано для построения систем обнаружения эхо-сигнала от объекта, измерения параметров обнаруженного объекта и его классификации при использовании взрывных сигналов в гидроакустической локальной сетевой системе связи. Взрывные...
Тип: Изобретение
Номер охранного документа: 0002694796
Дата охранного документа: 16.07.2019
23.08.2019
№219.017.c265

Гидролокационный способ обнаружения объекта и измерения его параметров

Изобретение относится к области гидроакустики и может быть использовано для построения систем автоматического обнаружения эхосигналов, принятых гидролокатором на фоне шумовой и реверберационной помехи и измерения параметров объекта при использовании псевдошумовых сигналов в условиях применения...
Тип: Изобретение
Номер охранного документа: 0002697937
Дата охранного документа: 21.08.2019
22.01.2020
№220.017.f806

Способ классификации гидроакустических сигналов шумоизлучения морских объектов

Настоящее изобретение относится к области гидроакустики и предназначено для классификации сигналов шумоизлучения обнаруженных объектов, в том числе и сигналов шумоизлучения, вызванных источниками биоакустики. Способ классификации гидроакустических сигналов шумоизлучения морских объектов...
Тип: Изобретение
Номер охранного документа: 0002711406
Дата охранного документа: 17.01.2020
24.06.2020
№220.018.2a23

Способ отображения гидролокационной информации

Изобретение относится к области гидроакустики и может быть использовано при проектировании и разработке систем активной гидролокации, для получения более полной информации о пространственном положении обнаруженных объектов в одном цикле «излучение - прием». Способ отображения гидролокационной...
Тип: Изобретение
Номер охранного документа: 0002724245
Дата охранного документа: 22.06.2020
+ добавить свой РИД