×
10.04.2013
216.012.3463

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ СБОРА ГАЗОВ В МЕТАЛЛИЧЕСКИХ РАСПЛАВАХ И СПОСОБ ИЗМЕРЕНИЯ СОДЕРЖАНИЯ ГАЗА В НИХ

Вид РИД

Изобретение

№ охранного документа
0002478954
Дата охранного документа
10.04.2013
Аннотация: Группа изобретений относится к сбору газов в металлических расплавах. Устройство для сбора газов в металлических расплавах содержит имеющий собирающее газ тело погружной конец, оканчивающийся у погружного конца газоподвод и газоотвод для проникающих через собирающее газ тело газов, причем собирающее газ тело имеет расположенную на погружном конце торцевую сторону и боковые стенки. При этом, по меньшей мере, часть собирающего газ тела имеет газонепроницаемый слой. Кроме того, описано применение заявленного устройства для измерения содержания газа в металлическом расплаве. 2 н. и 13 з.п. ф-лы, 1 ил.

Изобретение относится к устройству для сбора газов в металлических расплавах, содержащему имеющий собирающее тело погружной конец, оканчивающийся у погружного конца газоподвод и газоотвод для проникающих через собирающее тело газов, причем собирающее газ тело имеет расположенную на погружном конце торцевую сторону и боковые стенки. Кроме того, изобретение относится к способу измерения содержания газа в металлическом расплаве, при котором газ вводится в металлический расплав, вступает в газообмен с содержащимся в металлическом расплаве газом, поглощается и подается к измерительному устройству для обработки, причем в металлический расплав вводятся и обрабатываются, по меньшей мере, два разных газа, и при этом оба газа содержат газ-носитель и, при необходимости, примесь газа, доля которого в металлическом расплаве должна быть определена.

Такие устройства известны, например, из DE 102005011181 А1 или ЕР 307430 В1. В них газы из металлического расплава собираются и подаются к измерительному устройству, так что может быть измерено содержание определенных газов в металлическом расплаве. Для этого газоподвод для ввода эталонного газа или газа-носителя в металлический расплав пропускается через собирающее газ тело и выводится из него на его торцевой стороне. По газоподводу в металлический расплав вдувается эталонный газ. Он обогащается содержащимися в металлическом расплаве газами, или, по другому способу, эталонный газ имеет более высокую концентрацию измеряемого газа, чем металлический расплав, так что образующаяся газовая смесь имеет меньшую концентрацию измеряемого газового компонента, чем эталонный газ. Образующаяся газовая смесь принимается собирающим газ телом, подается по газоотводу к измерительному устройству и обрабатывается. Подробно способ измерения описан, например, в ЕР 307430 В1. Такие способы измерения описаны также в ЕР 563447 А1.

Аналогичные устройства известны из US 6216526 В1 и ЕР 295798 А1.

Задачей настоящего изобретения является усовершенствование известных устройств для сбора газа и повышение эффективности процесса сбора и способа измерения.

Эта задача решается посредством признаков независимых пунктов формулы. Предпочтительные варианты приведены в зависимых пунктах. За счет того, что, по меньшей мере, часть собирающего газ тела имеет газонепроницаемый слой, оно может принимать и подавать к газоотводу и, тем самым, к измерительному устройству бóльшую часть газов, поскольку проникающие в собирающее газ тело газы, по меньшей мере, по существу не могут покидать его вне газоотвода, так что к измерительному устройству может подаваться заметно большая доля принятых собирающим газ телом газов. За счет этого измерение становится более простым, более быстрым и, в конечном счете, также более точным.

Целесообразно, если, по меньшей мере, часть внешних боковых стенок имеет газонепроницаемый слой. Само собирающее газ тело может иметь на своей торцевой стороне уже известную из уровня техники полость. В этой полости сначала собираются идущие из расплава газы. Они проникают тогда в собирающее газ тело, поскольку они не могут выходить из полости иначе. За счет бокового экранирования газонепроницаемым слоем газы могут выходить только в газоотвод. Для этого газонепроницаемый слой может быть расположен на поверхности боковых стенок собирающего газ тела. Предпочтительно, что слой состоит, по меньшей мере, из двух расположенных друг на друге частичных слоев. Внутренний, обращенный внутрь собирающего газ тела частичный слой может быть выполнен из металла, в частности, из металла с более высокой температурой плавления, чем железо. В качестве металлов рассматриваются, в частности, молибден, титан, ванадий, хром, ниобий или сплав, по меньшей мере, с одним из этих металлов. Нижний внутренний частичный слой является газонепроницаемым. На него может быть нанесен внешний, обращенный наружу от собирающего газ тела частичный слой из керамики. Он может служить защитным слоем для нижнего частичного слоя из металла, расположенного между ним и собирающим газ телом. Внешний частичный слой может быть выполнен преимущественно из оксидной керамики или силиката, в частности из диоксида циркония, оксида алюминия, диоксида хрома, силиката циркония, силиката алюминия или шпинели.

Собирающее газ тело может быть почти полностью окружено защитным слоем, причем непокрытыми являются только расположенный на торцевой стороне газовый вход в собирающее газ тело и доступ к газоотводу из собирающего газ тела. Целесообразно оставить непокрытой всю торцевую сторону собирающего газ тела или только поверхность расположенной на торцевой стороне полости. Преимущественно, по меньшей мере, один из частичных слоев нанесен плазменным напылением.

Целесообразно собирающее газ тело может иметь цилиндрическую или коническую боковую стенку. Газоотвод расположен преимущественно на противоположной торцевой стороне задней стенке собирающего газ тела. Газоотвод может быть расположен, например, на присоединительном патрубке для газа или в отверстии собирающего газ тела.

Устройство используется, согласно изобретению, для измерения содержания газа в металлическом расплаве. Измерения возможны, например, в самых разных стальных расплавах. Само собирающее газ тело непроницаемо для металлического расплава, однако очень хорошо пропускает газ и обладает поглощающей (принимающей) измеряемые газы способностью.

Согласно изобретению, способ измерения характеризуется тем, что концентрация примешанного газа лежит либо в каждом случае ввода газа ниже, либо в каждом случае ввода газа выше концентрации измеряемого газа в металлическом расплаве. При этом следует исходить из предполагаемой концентрации газа в металлическом расплаве, и концентрация вводимого газа выбирается либо заметно ниже, либо заметно выше ожидаемой концентрации в металлическом расплаве. Тогда в металлическом расплаве происходит либо абсорбция, либо десорбция измеряемого газа. Следовательно, измерение производится с помощью двух (или более) независимых друг от друга газов. При этом могут использоваться одинаковые или разные газы-носители. Вводимые в расплав газы поглощают (принимают) газ из расплава, когда концентрация измеряемого газа в металлическом расплаве выше концентрации этого газа во вводимом газе, так что в качестве вводимого газа может использоваться даже только газ-носитель, а концентрация измеряемого газа во вводимом газе может быть нулевой. Наоборот, металлический расплав поглощает газ из вводимого газа, поскольку, в любом случае, желательно, конечно, равновесие. Для измерения можно воспользоваться тем обстоятельством, что абсорбционные и десорбционные характеристики разных газов в металлических расплавах могут быть разными.

В качестве газа-носителя могут использоваться инертные газы, преимущественно аргон и/или азот. В качестве примешиваемого газа может использоваться моноксид углерода, так что его содержание в металлическом расплаве можно измерить.

Пример осуществления изобретения более подробно поясняется ниже с помощью чертежа.

Чертеж изображает в частичном разрезе соответствующее изобретению устройство.

Изображенное на чертеже устройство крепится крепежным патрубком 1 на несущей трубе (не показана) и погружается с ней в стальной расплав. В него погружается собирающее газ тело 2 для осуществления в нем газообмена.

В крепежном патрубке 1 расположены газовые подключения 3; 3'. При этом центральное газовое подключение 3 оканчивается в расположенном по центру в устройстве газоподводе 4. Последний проходит по центру через собирающее газ тело и заканчивается под его торцевой стороной 5. По газоподводу 4 в металлический расплав вводится газ-носитель. Газоподвод 4 состоит, по существу, из кварцевой трубы, которая может быть изогнута на своем погружном конце, так что ее устье ориентировано в направлении собирающего газ тела 2. Газоподвод 4 зафиксирован в собирающем газ теле 2 цементом 6. Поступающий по газоподводу 4 в металлический расплав газ-носитель принимает (поглощает) из него газы, поднимается в полость 7 собирающего газ тела 2 и проникает в него оттуда и с торцевой стороны 5. Собирающее газ тело 2 выполнено из пористого материала, например цемента. Возможно также керамическое тело, например из оксида алюминия. Через поры собирающего газ тела газ поднимается вверх в газоотвод. Он, по существу, образован трубой 8 из кварцевого стекла, которая зафиксирована в собирающем газ теле 2 цементом 9. В трубе 8 расположен пористый наполнитель 10 из оксида алюминия, например в форме шариков. Через наполнитель 10 происходит отвод смешанного с газом из металлического расплава газа-носителя по газовым подключениям 3' к измерительному устройству. В нем извлеченный газ сравнивается с вводимым в металлический расплав газом, принятый (или возвращенный) из расплава газ обрабатывается (оценивается), и за счет этого определяется содержание газа в металлическом расплаве. Этот процесс сам по себе достаточно известен и описан, например, в ЕР 307430 В1 (или аналогично в ЕР 563447 А1). В качестве газа-носителя вводимого газа используется аргон. Для измерения содержания моноксида углерода в стальном расплаве к газу-носителю примешивается моноксид углерода в количестве более 2,5% (например, 5-10%), поскольку ожидаемое содержание газа составляет 2,5%.

Собирающее газ тело 2 имеет на своей конической внешней поверхности газонепроницаемый слой, состоящий из внутреннего (или нижнего) 11 и внешнего 12 частичных слоев. Внутренний частичный слой 11 выполнен из молибдена, а внешний частичный слой 12 служит защитным слоем и выполнен из шпинели.

В принципе, газонепроницаемый слой может быть расположен также на обращенном к погружному концу конце собирающего газ тела 2. Однако этого, как правило, не требуется, поскольку имеющиеся там поверхности настолько малы, что выход газа происходит лишь в незначительном объеме. Благодаря этому практически весь принятый устройством газ направляется в ограниченный трубой 8 из кварцевого стекла газоотвод.

С помощью устройства можно определить также содержание водорода или азота в стальных расплавах.


УСТРОЙСТВО ДЛЯ СБОРА ГАЗОВ В МЕТАЛЛИЧЕСКИХ РАСПЛАВАХ И СПОСОБ ИЗМЕРЕНИЯ СОДЕРЖАНИЯ ГАЗА В НИХ
Источник поступления информации: Роспатент

Показаны записи 21-29 из 29.
27.12.2019
№219.017.f37c

Способ измерения температуры ванны расплавленного металла

Изобретение относится к области термометрии и может быть использовано для измерения температуры ванны расплавленного металла в электродуговой печи. Заявлен способ подачи проволоки с сердечником в расплавленный металл, содержащийся в резервуаре, который включает расположение проволоки с...
Тип: Изобретение
Номер охранного документа: 0002710384
Дата охранного документа: 26.12.2019
27.01.2020
№220.017.f9f8

Погружное устройство для расплавленного металла и способ

Изобретение относится к металлургии, а именно к погружному устройству для контроля состояния расплавленного металла. Устройство содержит измерительную головку, держатель измерительной головки и штангу, которая съемно соединена с держателем или соединена с держателем посредством съемного...
Тип: Изобретение
Номер охранного документа: 0002712205
Дата охранного документа: 24.01.2020
01.02.2020
№220.017.fbff

Пробоотборники расплавленного металла для применений с высоким и низким содержанием кислорода

Группа изобретений относится к пробоотборникам для отбора проб из ванны расплавленного металла, в частности ванны расплавленной стали, для применений с высоким и низким содержанием кислорода. Пробоотборник содержит несущую трубку, имеющую погружной конец; узел пробоотборной камеры,...
Тип: Изобретение
Номер охранного документа: 0002712618
Дата охранного документа: 29.01.2020
05.02.2020
№220.017.fe21

Проволока с сердечником, способ и устройство для изготовления

Изобретение относится к области оптоволоконных измерительных устройств. Проволока (2) с сердечником для измерения температуры ванны расплава содержит оптическое волокно (6), металлическую трубку, по сторонам окружающую оптическое волокно (6), промежуточный слой (4), размещенный между...
Тип: Изобретение
Номер охранного документа: 0002712991
Дата охранного документа: 03.02.2020
01.04.2020
№220.018.1211

Улучшенный пробоотборник расплавленного металла

Изобретение относится к пробоотборнику для отбора проб из ванны расплавленного металла, в частности, расплавленного железа, содержащему несущую трубку, имеющую погружной конец; и узел пробоотборной камеры. Узел пробоотборной камеры содержит закрывающую пластину и корпус. Корпус содержит...
Тип: Изобретение
Номер охранного документа: 0002718077
Дата охранного документа: 30.03.2020
22.04.2020
№220.018.17ad

Расходуемое оптоволокно для измерения температуры ванны расплавленной стали

Группа изобретений относится к устройству для измерения температуры ванны расплавленной стали. Проволока с оптическим сердечником для улучшения измерения температуры в ванне расплавленной стали содержит оптическое волокно и покров, сбоку окружающий оптическое волокно. Покров окружает оптическое...
Тип: Изобретение
Номер охранного документа: 0002719353
Дата охранного документа: 17.04.2020
16.05.2020
№220.018.1d42

Погружное сопло для кабеля с волоконно-оптической сердцевиной

Предложенная группа изобретений относится к средствам для подачи кабеля с волоконно-оптической сердцевиной в ванну расплавленного металла и системе погружения и погружному соплу для осуществления способа. Погружное сопло (1) для подачи кабеля (6) с волоконно-оптической сердцевиной в ванну (11)...
Тип: Изобретение
Номер охранного документа: 0002721019
Дата охранного документа: 15.05.2020
20.05.2020
№220.018.1dce

Способ и устройство для извлечения и анализирования образца прямого анализа

Изобретение относится к устройству для извлечения и анализа образца прямого анализа. Устройство для извлечения и анализа образца прямого анализа, образованного из расплавленного металлического материала, содержащегося в узле камеры для образца, причем узел камеры для образца содержит, по...
Тип: Изобретение
Номер охранного документа: 0002721106
Дата охранного документа: 15.05.2020
14.05.2023
№223.018.5608

Способ калибровки спектрометра и эталонный материал

Изобретение относится к области спектрометрии. Способ калибровки оптического эмиссионного спектрометра, создающего спектральный свет посредством коротких искр, получаемых искровым генератором, падающих на мишень, заключается в том, что для калибровки спектрометра используют эталонный материал,...
Тип: Изобретение
Номер охранного документа: 0002730426
Дата охранного документа: 21.08.2020
Показаны записи 11-12 из 12.
19.01.2018
№218.016.0e91

Устройство регистрации для расплавленного металла

Изобретение относится к литейному производству. Устройство регистрации температуры фазового перехода расплавленного чугуна содержит чашу 12 для проб с полостью 18 для приема пробы расплавленного чугуна, датчик температуры 25 и лепешку 40, располагаемую в полости 18. Лепешка содержит...
Тип: Изобретение
Номер охранного документа: 0002633176
Дата охранного документа: 11.10.2017
10.07.2019
№219.017.adf7

Способ и устройство для измерения кривой охлаждения расплавов

Изобретение относится к способу и устройству измерения кривой охлаждения расплавов и/или кривой нагрева проб расплавов с помощью оптического волокна, причем имеющий по меньшей мере частично свободную поверхность погружной конец оптического волокна окружен термостойкой камерой приема пробы с...
Тип: Изобретение
Номер охранного документа: 0002336504
Дата охранного документа: 20.10.2008
+ добавить свой РИД