×
27.03.2013
216.012.3177

Результат интеллектуальной деятельности: СПОСОБ ПРОВЕДЕНИЯ ГРАДУИРОВКИ МАСС-СПЕКТРОМЕТРА ДЛЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА ГАЗОВЫХ СМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей заключается в определении коэффициентов чувствительности для индивидуальных газов на основании регистрируемых интенсивностей пиков масс-спектров и давления газа в системе напуска масс-спектрометра. Определение коэффициентов чувствительности прибора для индивидуальных газов проводят после набора серии анализов индивидуальных газов и газовых смесей с различным содержанием компонентов. При этом коэффициенты чувствительности определяют путем решения методом наименьших квадратов системы линейных уравнений вида: где P - давление газа в системе напуска масс-спектрометра; - приведенная интенсивность ионного тока j - компонента в i - газовой смеси; n - число анализов; m - число коэффициентов чувствительности, n≥m. Техническим результатом изобретения является разработка способа, позволяющего проводить градуировку масс-спектрометра без приготовления эталонных газовых смесей. 2 табл.
Основные результаты: Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей, заключающийся в определении коэффициентов чувствительности для индивидуальных газов на основании регистрируемых интенсивностей пиков масс-спектра и давления газа в системе напуска масс-спектрометра, отличающийся тем, что определение коэффициентов чувствительности прибора для индивидуальных газов проводят по серии результатов анализов индивидуальных газов и газовых смесей с различным содержанием компонентов, а коэффициенты чувствительности (K) определяют путем решения методом наименьших квадратов системы линейных уравнений вида: где P - давление газа в системе напуска масс-спектрометра; - приведенная интенсивность ионного тока j - компонента в i - газовой смеси; n - число анализов; m - число коэффициентов чувствительности, n≥m.

Изобретение относится к методам физико-химического анализа и может быть использовано в любых областях науки и техники, где требуется количественное определение состава газовых сред, содержащих изотопы водорода и гелия, масс-спектрометрическим методом.

При определении количественного состава газа масс-спектрометрическим методом неотъемлемой процедурой является градуировка (калибровка) прибора, цель которой заключается в определении зависимостей (коэффициентов чувствительности) регистрируемых интенсивностей пиков ионов от парциального давления газа в системе напуска масс-спектрометра. Величина коэффициентов чувствительности при ионизации газа электронным ударом определяется несколькими факторами, в частности разницей потенциалов ионизации, разницей масс атомов и молекул анализируемого газа, различием структурной формулы и др. [1-3]. Наибольшее отличие масс существует у изотопов водорода и гелия, что обусловливает разницу величин коэффициентов чувствительности для молекул, содержащих изотопы водорода и атомов гелия при масс-спектрометрическом анализе. С увеличением массы молекулы, содержащей изотопы водорода, различие величин коэффициентов чувствительности становится менее значительным.

Известны два основных способа проведения градуировки масс-спектрометра: первый - градуировка проводится по индивидуальным газам, а коэффициент чувствительности определяется путем отношения измеренного парциального давления индивидуального газа к регистрируемой интенсивности пика [2, 4] для всех определяемых газовых компонентов, после чего проводится их нормирование относительно одного выбранного компонента; второй - градуировка проводится по эталонным газовым смесям с известной концентрацией компонентов, при этом коэффициент относительной чувствительности (КОЧ) одного из компонентов принимают за единицу [5, 6].

Аналогом предлагаемого способа может служить способ градуировки масс-спектрометра по эталонным газовым смесям [5, 6]. В данном способе КОЧ индивидуального газа рассчитывают по результатам масс-спектрометрического анализа газовой смеси путем соотношения зарегистрированных интенсивностей пиков масс-спектра с концентрацией соответствующих компонентов данной газовой смеси по формуле

где Ij - зарегистрированная интенсивность j - компонента, Kj - определяемый КОЧ j - компонента, Zj - содержание j - компонента в калибровочной газовой смеси, n - число компонентов в калибровочной газовой смеси.

При расчете КОЧ по формуле (1) один из КОЧ должен быть известен или принят за 1.

Недостатком аналога при решении задач, связанных с количественным определением газовых смесей, содержащих изотопы водорода, является то, что для градуировки масс-спектрометра необходима газовая смесь с известным составом. Однако при наличии в газовой смеси трития или его молекулярных соединений вследствие радиолиза газа бета-частицами происходит неконтролируемый изотопный обмен [7], что, как следствие, ведет к изменению начального состава газовой смеси.

Прототипом предлагаемого способа может служить способ градуировки масс-спектрометра для количественного анализа газовых смесей, заключающийся в определении коэффициентов чувствительности для индивидуальных газов на основании регистрируемых интенсивностей пиков масс-спектра и давления газа в системе напуска масс-спектрометра [4] по формуле

где Kj - определяемый КОЧ j - компонента, Pj - давление j - компонента, Ij - зарегистрированная интенсивность j - компонента.

Недостатком прототипа является отсутствие практической возможности получения индивидуальных газов с однородным изотопным составом типа: HD, НТ, DT, СН3Т, СТ4, NT3 и других подобных соединений. Это, как следствие, делает невозможным проведение градуировки прибора для данных газов по способу-прототипу. Кроме того, при хранении вследствие радиоактивного распада атомов трития образуется изотоп гелия-3, который изменяет состав газовой пробы и будет влиять на результаты масс-спектрометрических анализов.

Сумма перечисленных факторов показывает сложность вопроса, связанного с градуировкой масс-спектрометра применительно к количественному анализу газовых смесей, содержащих изотопы водорода.

Таким образом, задачей изобретения является создание способа, позволяющего проводить градуировку масс-спектрометра по всем изотопным комплексам водорода (Н2, HD, D2, НТ, DT, T2) и изотопам гелия (3He, 4He).

Технический результат, получаемый при использовании изобретения, заключается в том, что проводят серию масс-спектрометрических анализов индивидуальных газов (Н2, D2, Т2, 3He, 4He) и газовых смесей (H2+HD+D2; Н2+НТ+Т2; D2+DT+T2) с различным, но не известным содержанием компонентов. По результатам проведенных анализов определяют коэффициенты чувствительности масс-спектрометра, вследствие чего отпадает необходимость проведения градуировки прибора как самостоятельной стадии анализа, в том числе и по газовым смесям, содержащим изотопные комплексы HD, НТ и DT.

Поставленная задача решается тем, что при осуществлении способа, включающего определение коэффициентов чувствительности для индивидуальных газов на основании регистрируемых интенсивностей пиков масс-спектра и давления газа в системе напуска масс-спектрометра, согласно изобретению определение коэффициентов чувствительности прибора для индивидуальных газов проводят по серии результатов анализов индивидуальных газов и газовых смесей с различным содержанием компонентов, а коэффициенты чувствительности определяют путем решения методом наименьших квадратов системы линейных уравнений вида:

где Pi - давление анализируемой газовой смеси в системе напуска масс-спектрометра; Kj - коэффициент чувствительности j - компонента газовой смеси; Yi,j - интенсивность ионного тока j - компонента в i - газовой смеси; n - число анализов; m - число определяемых коэффициентов чувствительности, n≥m.

На основании определенных коэффициентов чувствительности в дальнейшем при анализе газовых смесей изотопов водорода и гелия расчет концентраций компонентов газовой смеси (Сj) проводят по формуле:

где Р - давление исследуемой газовой смеси в системе напуска масс-спектрометра (Р=ΣPj);

Pj - парциальное давление индивидуального газа в анализируемой газовой смеси.

Способ осуществляется следующим образом. Согласно изобретению градуировку масс-спектрометра проводят по результатам выполненных анализов индивидуальных газов (Н2, D2, Т2, 3He, 4He) и газовых смесей (Н2+D2; Н22; D2+T2). Газовые смеси готовят с различным содержанием компонентов, перекрывая не менее трех диапазонов концентраций, например: 20, 50 и 80%. Для получения значимых концентраций изотопных комплексов (HD, HT, DT) в соответствующих газовых смесях (H2+D2; Н22; D2+T2) проводят процесс уравновешивания изотопного состава путем цикла гидрирования - дегидрирования на гидридобразующем материале, например интерметаллическом соединении ZrCrFex [8]. При проведении масс-спектрометрических анализов в соответствии с патентом РФ №2367939 одновременно регистрируют давление газа в системе напуска масс-спектрометра и интенсивности масс-спектра. Результаты масс-спектрометрических анализов (масс-спектрометр типа МХ-7304) заносят в табл.1, при этом значения интенсивностей пиков (Yj) делятся на значение давления газа (Р), что позволяет перейти от абсолютных значений давления к относительным значениям концентраций (Cj), то есть

Когда число строк табл.1 будет больше или равно числу столбцов, составляют матричное уравнение:

где - приведенное значение интенсивности масс-спектра.

Решают уравнение (7) относительно вектора коэффициентов чувствительности (К) по алгоритмам для разреженных матриц [9, 10]. Наиболее эффективно проводить вычисления на языках программирования MatLab R2009, Maple 13 или Lab-View 2009, имеющих встроенные библиотеки для решения подобных задач. Результаты градуировки по заявленному способу представлены в табл.2.

Таблица 1
Матрица последовательного накапливания данных
m/е=2 m/e=3 m/e=3 m/e=4 m/e=4 m/e=5 m/e=5 m/e=6 Yp
Н2 He-3 HD He-4 HT D2 DT T2 CΣ
0.14527 0 0 0 0 0 0 0 1
0.147 0 0 0 0 0 0 0 1
0.1469 0 0 0 0 0 0 0 1
0 0.1195 0 0 0 0 0 0 1
0 0 0 0 0 0 0.03 1.3693 1
0 0.1187 0 0 0 0 0 0 1
0 0 0 0.135 0 0 0 0 1
0 0 0 0.1381 0 0 0 0 1
0.005 0 0 0 0 0.99 0 0 1
0.07753 0 0 0 0.1626 0 0.01 0.23632 1
0.003 0 0 0 0 0.99 0 0 1
0.0087 0 0 0 0 0.96 0 0 1
0.103 0 0.0925 0 0 0.067 0 0 1
0.047 0 0.1774 0 0 0.2378 0 0 1
0.05 0 0.1489 0 0 0.2951 0 0 1
0.051 0 0.1409 0 0 0.2876 0 0 1
0.072 0 0 0 0 0.5262 0 0 1
0 0 0 0 0.01 0 0.03 1.3682 1
0.067 0 0 0 0 0.54945 0 0 1
0.0352 0 0.1749 0 0 0.3485 0 0 1
0.0661 0 0.097 0 0 0.33536 0 0 1
0.04 0 0.19153 0 0 0.2546 0 0 1
0.041 0 0.20036 0 0 0.2148 0 0 1
0 0 0 0 0 0.4695 0.366 0.30794 1
0 0 0 0,135 0 0 0 0 1
0.04859 0 0.15456 0 0 0.27541 0 0 1
0.09876 0 0.0652 0 0 0.15988 0 0 1
0 0 0 0 0 0.10398 0.01855 1.2089 1

Таблица 2
Коэффициенты чувствительности изотопов водорода и гелия
m/e=2 m/e=3 m/e=3 m/e=4 m/e=4 m/e=4 m/e=5 m/е=6
Н2 He-3 HD He-4 HT D2 DT Т2
6,83 8,4 2,5 7,35 1,8 0,98 0,87 0,717

Для доверительной вероятности Р=0.99 и числе степеней свободы (n-1)=27 (табл.1), коэффициент Стьюдента равен t=2.77, тогда доверительный интервал для коэффициентов чувствительности (Kj) изотопов водорода и гелия составит:

В дальнейшем данные табл.1 могут быть дополнены новыми результатами, что, как следствие, будет минимизировать относительную погрешность определения коэффициентов чувствительности.

Использование изобретения позволит повысить точность и достоверность получаемых результатов при анализе газовых смесей, содержащих изотопы водорода и гелия. Кроме того, снимается проблема приготовления градуировочных газовых смесей и их аттестация альтернативными (независимыми) методами анализа, что весьма актуально при анализе газовых смесей, содержащих атомы трития.

Литература

1. Сысоев А.А., Чупахин М.С. Введение в масс-спектрометрию. М.: Атомиздат, 1977.

2. Агафонов Л.И., Девятых Г.Г. Масс-спектрометрический анализ газов и паров особой чистоты. - М.: Наука, 1980.

3. Сидоров Л.Н., Коробов М.В., Журавлева Л.В. Масс-спектральные термодинамические исследования. Изд. Московского университета, 1985, с.28.

4. Абрамов И.А., Казаковский Н.Т. Способ проведения количественного масс-спектрометрического анализа газовых смесей. Патент РФ 2367939 С1, приоритет от 28.01.2008. G01N 27/64, опубл. 20.09.2009. БИ. №26. (Прототип).

5. Котлеров Д.В. Метрологические основы газоаналитических измерений. - М.: Изд-во Комитета стандартов, мер и измерительных приборов, 1967.

6. Капышев В.К., Милешкин Ю.А. и др. "Методика определения изотопного состава водорода и гелия в тритиевой технологической системе установки ТСП". Вопросы атомной науки и техники. Серия Термоядерный синтез, вып.4, стр.38-41, 1991.

7. Андреев Б.М., Магомедбеков Э.П., Розенкевич М.Б., Сахаровский Ю.А. Гетерогенные реакции изотопного обмена трития. М.: Эдиториал УРСС, 1999, с.27.

8. Ривкис Л.А., Капышев В.К., Осипов И.Е., Князев А.И. Сорбционный компрессор на основе интерметаллида ZrCrFex для обратимого хранения топлива. Аннотации докладов международного семинара "Потенциал российских ядерных центров и МНТЦ в тритиевых технологиях", Саров, 17-21 мая 1999, с.39.

9. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов. Пер. с англ. - М.: Наука, Гл. ред. физ.-мат.лит., 1986.

10. Джордж А., Лю Дж. Численное решение больших разреженных систем уравнений. Пер. с англ. - М.: Мир, 1984.

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей, заключающийся в определении коэффициентов чувствительности для индивидуальных газов на основании регистрируемых интенсивностей пиков масс-спектра и давления газа в системе напуска масс-спектрометра, отличающийся тем, что определение коэффициентов чувствительности прибора для индивидуальных газов проводят по серии результатов анализов индивидуальных газов и газовых смесей с различным содержанием компонентов, а коэффициенты чувствительности (K) определяют путем решения методом наименьших квадратов системы линейных уравнений вида: где P - давление газа в системе напуска масс-спектрометра; - приведенная интенсивность ионного тока j - компонента в i - газовой смеси; n - число анализов; m - число коэффициентов чувствительности, n≥m.
СПОСОБ ПРОВЕДЕНИЯ ГРАДУИРОВКИ МАСС-СПЕКТРОМЕТРА ДЛЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА ГАЗОВЫХ СМЕСЕЙ
СПОСОБ ПРОВЕДЕНИЯ ГРАДУИРОВКИ МАСС-СПЕКТРОМЕТРА ДЛЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА ГАЗОВЫХ СМЕСЕЙ
СПОСОБ ПРОВЕДЕНИЯ ГРАДУИРОВКИ МАСС-СПЕКТРОМЕТРА ДЛЯ КОЛИЧЕСТВЕННОГО АНАЛИЗА ГАЗОВЫХ СМЕСЕЙ
Источник поступления информации: Роспатент

Показаны записи 51-57 из 57.
26.08.2017
№217.015.ec5a

Способ кондиционирования воды, содержащей тритий

Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения и может быть использовано для снижения класса опасности жидких радиоактивных отходов (ЖРО), в том числе высокоактивных отходов (ВАО). Способ кондиционирования воды, содержащей тритий, заключается в соединении...
Тип: Изобретение
Номер охранного документа: 0002627690
Дата охранного документа: 10.08.2017
29.12.2017
№217.015.f603

Способ переработки жидких радиоактивных отходов

Изобретение представляет собой способ переработки жидких радиоактивных отходов и относится к области охраны окружающей среды. Cпособ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключается в выделении дисперсной фазы. Перед выделением дисперсной фазы в исходные жидкие...
Тип: Изобретение
Номер охранного документа: 0002637811
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f70e

Способ двухлучевой лазерной сварки

Изобретение относится к способу двухлучевой лазерной сварки алюминиевых сплавов и конструкционных сталей и может найти применение в различных отраслях машиностроения, в частности при сварке изделий в камере сварки с инертным газом. Способ заключается в направлении лазерных лучей к месту сварки...
Тип: Изобретение
Номер охранного документа: 0002639200
Дата охранного документа: 20.12.2017
11.03.2019
№219.016.dcce

Автоматизированный комплекс для испытаний интегральных микросхем на радиационную стойкость

Изобретение относится к радиационной технике и может быть использовано для проведения испытаний интегральных микросхем различных типов и классов на радиационную стойкость в условиях воздействия импульсных и стационарных ионизирующих излучений, генерируемых соответствующими установками....
Тип: Изобретение
Номер охранного документа: 0002435169
Дата охранного документа: 27.11.2011
19.04.2019
№219.017.329f

Универсальное грузоподъемное приспособление

Изобретение относится к области машиностроения, а именно к грузоподъемным устройствам, предназначенным для захвата, подъема и перемещения грузов. Универсальное грузоподъемное приспособление содержит корпусную втулку и две щеки с отверстиями, в которые установлен палец под крюк грузоподъемного...
Тип: Изобретение
Номер охранного документа: 0002406678
Дата охранного документа: 20.12.2010
18.05.2019
№219.017.5a9d

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к технологии изготовления смесевых взрывчатых веществ, содержащих мощное взрывчатое вещество и металл. Способ заключается в смешивании исходных компонентов в присутствии легколетучей органической жидкости с последующим ее удалением и сушкой смесевого взрывчатого вещества....
Тип: Изобретение
Номер охранного документа: 0002433986
Дата охранного документа: 20.11.2011
09.06.2019
№219.017.7f27

Уплотнение горловины оболочки из упруго-эластичного материала

Изобретение относится к области машиностроения и может быть использовано для герметизации различных эластичных тонкостенных камер, оболочек, работающих под действием давления рабочей среды. Уплотнение горловины оболочки из упругоэластичного материала включает крышку с выходным патрубком,...
Тип: Изобретение
Номер охранного документа: 0002444663
Дата охранного документа: 10.03.2012
Показаны записи 51-59 из 59.
26.08.2017
№217.015.ec5a

Способ кондиционирования воды, содержащей тритий

Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения и может быть использовано для снижения класса опасности жидких радиоактивных отходов (ЖРО), в том числе высокоактивных отходов (ВАО). Способ кондиционирования воды, содержащей тритий, заключается в соединении...
Тип: Изобретение
Номер охранного документа: 0002627690
Дата охранного документа: 10.08.2017
29.12.2017
№217.015.f603

Способ переработки жидких радиоактивных отходов

Изобретение представляет собой способ переработки жидких радиоактивных отходов и относится к области охраны окружающей среды. Cпособ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключается в выделении дисперсной фазы. Перед выделением дисперсной фазы в исходные жидкие...
Тип: Изобретение
Номер охранного документа: 0002637811
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f70e

Способ двухлучевой лазерной сварки

Изобретение относится к способу двухлучевой лазерной сварки алюминиевых сплавов и конструкционных сталей и может найти применение в различных отраслях машиностроения, в частности при сварке изделий в камере сварки с инертным газом. Способ заключается в направлении лазерных лучей к месту сварки...
Тип: Изобретение
Номер охранного документа: 0002639200
Дата охранного документа: 20.12.2017
29.05.2018
№218.016.5679

Способ отверждения органических жидких радиоактивных отходов

Изобретение относится к области охраны окружающей среды, в частности к процессам отверждения органических ЖРО. Способ отверждения органических жидких радиоактивных отходов (ЖРО) заключается в соединении ЖРО с отвердителем, содержащим парафин, нагревании полученной смеси и выдерживании до...
Тип: Изобретение
Номер охранного документа: 0002654542
Дата охранного документа: 21.05.2018
10.04.2019
№219.017.081d

Способ определения концентрации бета-радиоактивных газов

Изобретение относится к области радиохимии и может быть использовано при проведении технологического контроля или научно-исследовательских работ, связанных с изучением кинетики взаимодействия бета-радиоактивных газов. Технический результат - проведение прямого определения концентрации...
Тип: Изобретение
Номер охранного документа: 0002400773
Дата охранного документа: 27.09.2010
29.05.2019
№219.017.673c

Способ очистки гелия от примеси изотопов водорода

Изобретение относится к технологии очистки инертных газов от газообразных примесей. Исходную газообразную смесь подают в сорбционный блок с пористым нанодисперсным углеродом для поглощения изотопов водорода под воздействием температуры. Одновременно с этим гелий отводят из сорбционного блока....
Тип: Изобретение
Номер охранного документа: 0002323157
Дата охранного документа: 27.04.2008
01.08.2019
№219.017.bb47

Способ кондиционирования органических жидких радиоактивных отходов

Изобретение относится к области охраны окружающей среды, в частности к вопросам безопасного обращения с органическими жидкими радиоактивными отходами. Способ отверждения органических жидких радиоактивных отходов (ЖРО) заключается в соединении ЖРО с отвердителем, способным к многоразовым циклам...
Тип: Изобретение
Номер охранного документа: 0002696013
Дата охранного документа: 30.07.2019
12.06.2020
№220.018.268d

Способ иммобилизации твердых радиоактивных отходов в матричный материал

Изобретение относится к области обработки радиоактивных отходов (РАО). Способ заключается в заполнении контейнера твердыми РАО, герметизации контейнера с последующим его вакуумированием, подаче в контейнер жидкого матричного материала и отверждении полученного компаунда. Вакуумирование...
Тип: Изобретение
Номер охранного документа: 0002723348
Дата охранного документа: 10.06.2020
24.07.2020
№220.018.37f0

Способ кондиционирования тритийсодержащей воды

Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения, в частности к области кондиционирования тритийсодержащей воды. Способ заключается в соединении тритийсодержащей воды с предварительно приготовленным отвердителем, перемешивании с отвердителем до получения...
Тип: Изобретение
Номер охранного документа: 0002727711
Дата охранного документа: 23.07.2020
+ добавить свой РИД