×
27.03.2013
216.012.3131

Результат интеллектуальной деятельности: ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др. Сплав содержит, мас.%: 1,5-2,5 Ni; 1-2 Mn; 0,3-0,7 Fe, 0,2-0,6 Zr, 0,02-0,12 Sc, 0,002-0,1 Се при содержании циркония и скандия, удовлетворяющем условию 0,44<2·C+C<0,64, причем цирконий и скандий присутствуют в структуре сплава в виде фазы Al(Zr, Sc) с кристаллической решеткой L1 и средним размером наночастиц не более 20 нм. Техническим результатом является создание нового экономнолегированного термостойкого сплава. 1 табл., 4 пр., 3 ил.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С. Среди них: детали автомобильных двигателей (головки цилиндров, корпусы водяных насосов, впускные трубы и др.), детали авиационного назначения (корпусы, крышки, сопла, задвижки, фланцы и т.д.), детали водозаборной арматуры, ступени погружного насоса для нефтегазового комплекса, детали радиаторов отопления и др.

Одним из недостатков марочных алюминиевых сплавов, который препятствует их более широкому использованию, является ограничение по рабочим температурам. Даже у лучших по этой характеристике сплавов на базе системы Al-Cu типа АМ5 [ГОСТ 1583-93] рабочие температуры не превышают 250-300°С. При этом минусом последних является и то, что технология получения из них отливок требует полной термообработки, включающей в себя операцию закалки. Это удорожает их стоимость и нередко приводит к появлению нежелательного брака, в частности к нестабильности размеров. Следует также отметить, что сплавы типа АМ5 имеют очень низкие литейные свойства, что затрудняет получение из них тонкостенных отливок сложной формы [Золоторевский B.C., Белов Н.А. Металловедение литейных алюминиевых сплавов. - М.: МИСиС, 2005, 376 с.].

Для устранения недостатков, свойственных сплавам типа АМ5, в работе [Belov N.A. "Principles of Optimising the Structure of Creep-Resisting Casting Aluminium Alloys Using Transition Metals". Journal of Advanced Materials, 1994 1 (4), p.321-329] было предложено создавать термостойкие сплавы на базе эвтектики (Al)+Al3Ni за счет легирования никелем и другими переходными металлами (Mn, Zr, Cr, Sc, V и т.д.). Сконструированные таким образом сплавы ориентированы на традиционные литейные технологии и имеющееся оборудование, технологический цикл получения из них готовых деталей намного короче по сравнению с марочными сплавами на базе системы Al-Cu (в частности, отсутствует операция закалки). Этот подход нашел отражение в ряде патентов. В частности, в патенте РФ №2001145 (бюл. 37-38 от 15.10.1993, МИСиС) заявлен сплав на основе алюминия, содержащий 3-6,5% Ni, 0,5-2% Mn, 0,2-0,8% Sc и 0,05-0,3% Zr. Данный сплав обладает превосходными литейными свойствами и более высокой жаропрочностью при 300-350°С по сравнению со сплавами типа АМ5. На базе эвтектики (Al)+Al3Ni было разработано несколько экспериментальных сплавов (они получали название никалины), которые успешно прошли опытно-промышленное опробование в условиях ОАО «ИЛ» и ОАО «ВАСО» [Белов Н.А., Золоторевский B.C. «Литейные сплавы на основе алюминиево-никелевой эвтектики (никалины) как возможная альтернатива силуминам». Цветные металлы, 2003, №2, С.99-105]. Недостатком этих сплавов является высокое содержание никеля, что отрицательно сказывается на стоимости отливок. Вторым недостатком является строгое ограничение по предельно допустимому содержанию железа, т.е. для их производства требуется алюминий высокой чистоты, что также приводит к удорожанию отливок.

Наиболее близким сплавом к предложенному является сплав, раскрытый в патенте US 2004/0261916 F1 (публ. 30.12.2004, патентовладелец: Alcoa Inc.). Данный сплав, предназначенный для получения фасонных отливок различными методами литья, содержит, мас.%: 0,5-6% Ni, 1-3% Mn, до 1% Zr, до 0,6% Sc. В частных пунктах этого патента заявлены наиболее предпочтительные концентрации легирующих элементов: ~4% Ni, ~2% Mn, ~0,6 % Zr (или ~0,3% Sc). Основным недостатком этого сплава является неэкономный состав: высокое содержание никеля и отсутствие среди легирующих компонентов железа. Это препятствует использованию лома отходов для его производства. Следует также отметить, что повышенное содержание никеля отрицательно сказывается на общей коррозии. В условиях воздействия средне-агрессивной среды (например, морской воды) это приводит к сильному потемнению поверхности отливок.

Задачей изобретения является создание нового термостойкого сплава на основе алюминия (экономнолегированного никалина), предназначенного для получения фасонных отливок сложной формы, содержащего не более 2,5% Ni и допускающего не менее 0,3% Fe.

Поставленная задача решена тем, что литейный сплав на основе алюминия, содержащий никель, марганец, цирконий и скандий, отличается тем, что он дополнительно содержит железо и церий при следующих концентрациях легирующих компонентов, мас.%:

Компонент Содержание в сплаве, мас.%
Никель 1,5-2,5
Железо 0,3-0,7
Марганец 1,0-2,0
Цирконий1 0,2-0,6
Скандий1 0,02-0,12
Церий 0,002-0,1
1для достижения наилучшего сочетания механических свойств должно выполниться условие:
0,44<2·CZr+CSc<0,64 (где CZr и CSc - концентрации циркония и скандия в сплаве, мас.%).

Цирконий и скандий присутствуют в его структуре в виде наночастиц фазы Al3(Zr, Sc) (кристаллическая решетка L12), имеющих средний размер не более 20 нм. Это позволяет достичь в отливках следующего уровня механических свойств: временное сопротивление (σв) не менее 250 МПа, относительное удлинение (6) - не менее 4%, 100-часовая прочность (σ100) при 350°С составляет не менее 40 МПа, при этом прочностные свойства не снижаются после нагрева при температурах до 400°С включительно при выдержке до 10 часов.

Сущность изобретения состоит в следующем. Концентрации никеля и железа в заявленных пределах обеспечивают высокие технологические свойства при получении тонкостенных отливок (в частности, формозаполняемость и стойкость к образованию горячих трещин). Эти элементы полностью входят в состав фаз Al3Ni и Al9FeNi эвтектического происхождения. Для достижения наилучших механических свойств, в частности пластичности, эвтектика должна обладать достаточно дисперсной структурой подобно той, которая показана на фигуре 1. Концентрация марганца в заявленных пределах обеспечивает необходимый уровень жаропрочности. После термообработки марганец присутствует в структуре в виде вторичных выделений фазы Al6Mn, типичный размер которых составляет 100-500 мкм (фигура 2). Концентрации циркония и скандия в заявленных пределах обеспечивают необходимый эффект дисперсионного твердения за счет образования при отжиге наночастиц фазы Al3Zr и/или Al3(Zr, Sc) с решеткой L12. Средний размер этих наночастиц не должен превышать 20 нм (фигура 3). Церий в заявленных пределах выполняет вспомогательную функцию, нейтрализуя отрицательное влияние примеси кремния на показатель горячеломкости.

ПРИМЕР 1

Были приготовлены 6 сплавов, составы которых указаны в табл.1. Все сплавы готовили в электрической печи сопротивления в графитошамотных тиглях на основе переплава отходов катанки марки А5Е (0,4% примесей, остальное алюминий). Из экспериментальных сплавов были получены отдельно отлитые образцы согласно ГОСТ 1583-93. Эти образцы подвергали отжигу в муфельной электропечи по следующему режиму: 350°С, 3 часа +450°С, 3 часа. Механические свойства (временное сопротивление - σв, условный предел текучести - σ0,2 и относительное удлинение - δ) определяли по результатам испытания на одноосное растяжение на машине Zwick Z250. Испытания при комнатной температуре проводили по ГОСТ 1497-84. Испытания на 100-часовую прочность при 350°С проводили по ГОСТ 10145-81.

Таблица 1
Составы экспериментальных сплавов и их свойства после термообработки
Легирующие компоненты1, мас.% Мех. свойства на растяжение
Ni Mn Fe Zr Sc Се Ti σв, МПа σ0,2, МПа δ, %
1 1 0,5 0,1 0,1 0,01 0,001 135 75 14,5
2 1,5 2 0,7 0,2 0,12 0,1 250 160 6,5
3 2 1,4 0,5 0,4 0,05 0,01 260 170 7,5
4 2,5 1 0,3 0,6 0,02 0,002 255 165 6,0
5 3 2,5 1 0,8 0,2 0,2 190 185 0,5
6 4 2 0,3 0,15 0,1 205 155 3,5
1основа алюминий (вместе с примесями)

Из табл.1 видно, что только заявляемый сплав (составы 2-4) обеспечивает наилучшее сочетание временного сопротивления (σв), предела текучести (σ0,2) и относительного удлинения (δ): временное сопротивление (σв) не менее 250 МПа, предел текучести (σ0,2) не менее 160 МПа, относительное удлинение (δ) - не менее 4%.

В сплаве 1 прочность меньше требуемого уровня, что связано с недостаточным количеством выделений фазы Al3(Zr, Sc).

Сплав 5 имеет низкое значение 5, что связано с наличием первичных кристаллов интерметаллидов.

Сплав прототип (состав 6) уступает сплавам 2-4 по механическим свойствам. При этом он содержит больше никеля.

ПРИМЕР 2

Образцы заявляемого сплава состава №3 были подвергнуты отжигу при 400°С в течение 10 часов. После испытания на растяжение были получены следующие значения: временное сопротивление (σв) - 265 МПа, предел текучести (σ0,2) - 170 МПа. Таким образом, снижения прочностных свойств по сравнению с исходным уровнем (см. табл.1) не произошло, что обусловлено высокой термической стабильностью структуры сплава.

ПРИМЕР 3

Образцы заявляемого сплава состава №3 были подвергнуты испытанию на 100-часовую прочность при 350°С. Полученное значение (σ100) составило 43 МПа.

ПРИМЕР 4

Образцы заявляемого сплава состава №3 и сплава-прототипа №6 (см. табл.1) были подвергнуты испытанию на общую коррозию в водном растворе 5,7% NaCl+0,3% H2O2. После выдержки в течение 24 часов заявляемый сплав имел существенно меньшее потемнение поверхности по сравнению со сплавом-прототипом. Повышенная коррозионная стойкость заявленного сплава обусловлена меньшим содержанием никеля.


ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ
ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ
ТЕРМОСТОЙКИЙ ЛИТЕЙНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ
Источник поступления информации: Роспатент

Показаны записи 51-56 из 56.
19.06.2019
№219.017.89a3

Сверхширокодиапазонный поглотитель электромагнитных волн для безэховых камер и экранированных помещений

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических...
Тип: Изобретение
Номер охранного документа: 0002453953
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.89c2

Способ легирования чугуна марганцем

Изобретение относится к черной металлургии и может быть использовано для легирования чугуна марганцем. Легирование осуществляют отвальным шлаком силикотермической плавки рафинированных марганцевых сплавов, содержащим, мас.%: 18-22 MnO, 0,003-0,005 P, 26-29 SiO, 43-46 CaO, 2-4 AlO, 2-4 MgO,...
Тип: Изобретение
Номер охранного документа: 0002458994
Дата охранного документа: 20.08.2012
19.06.2019
№219.017.89ca

Шихта для выплавки высокоуглеродистого ферромарганца

Изобретение относится к черной металлургии и может быть использовано при выплавке высокоуглеродистого ферромарганца. Шихта содержит, мас.%: отвальный шлак силикотермической плавки металлического марганца 1-88, кокс 5-25, известняк 0-20, железосодержащие добавки 0-10, марганецсодержащее сырье -...
Тип: Изобретение
Номер охранного документа: 0002456363
Дата охранного документа: 20.07.2012
19.06.2019
№219.017.89e3

Способ получения нанокомпозита feni/пиролизованный полиакрилонитрил

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/пиролизованный полиакрилонитрил (ППАН). Способ получения нанокомпозита включает приготовление раствора FeCl·6НО, NiCl·6НО и ПАН (М=1·10) в диметилформамиде (ДМФА), выдерживание до растворения FеCl·6НO, NiCl·6HO и ПАН в ДМФА,...
Тип: Изобретение
Номер охранного документа: 0002455225
Дата охранного документа: 10.07.2012
19.06.2019
№219.017.8af1

Способ вакуум-термического получения лития

Изобретение относится к металлургии и может быть использовано для получения лития вакуум-термическим методом при использовании вакуумной шахтной электропечи сопротивления в режиме совмещенного процесса синтез-восстановление-конденсация. Исходную шихту брикетируют при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002449034
Дата охранного документа: 27.04.2012
10.07.2019
№219.017.b0ed

Способ обработки низкоуглеродистых сталей

Изобретение относится к области обработки низкоуглеродистых сталей и может быть использовано для изготовления крепежных деталей, проволоки, ответственных элементов строительных конструкций. Способ включает равноканальное угловое прессование при пересечении каналов под углом 90° по маршруту B с...
Тип: Изобретение
Номер охранного документа: 0002443786
Дата охранного документа: 27.02.2012
Показаны записи 61-70 из 70.
17.04.2020
№220.018.1567

Способ заделки дефектов в литых деталях из магниевых сплавов

Изобретение относится к области металлургии, в частности к способам устранения пористости и восстановления герметичности в фасонных отливках из магниевых сплавов. Способ включает нанесение жидкого легкоплавкого металлического сплава на основе галлия при комнатной температуре на поверхность...
Тип: Изобретение
Номер охранного документа: 0002718807
Дата охранного документа: 14.04.2020
12.04.2023
№223.018.43c7

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, применяемых в автомобилестроении, для корпусов электронных устройств, для деталей ответственного...
Тип: Изобретение
Номер охранного документа: 0002793657
Дата охранного документа: 04.04.2023
10.05.2023
№223.018.5341

Способ автоматического непрерывного контроля качества поверхности

Изобретение относится к области металлургии и может быть использовано в непрерывном производстве изделий, кристаллизующихся с открытой поверхностью для контроля качества поверхности с выявлением таких дефектов, как трещины, неметаллические включения, раковины, вздутия. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002795303
Дата охранного документа: 02.05.2023
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
16.05.2023
№223.018.614b

Литейный алюминиево-кальциевый сплав на основе вторичного сырья

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 300°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный сплав на...
Тип: Изобретение
Номер охранного документа: 0002741874
Дата охранного документа: 29.01.2021
20.05.2023
№223.018.650f

Литейный алюминиевый сплав

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения тонкостенных отливок сложной формы литьем в металлическую форму, в частности для литья автокомпонентов, деталей электронных устройств и др. Литейный сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002745595
Дата охранного документа: 29.03.2021
21.05.2023
№223.018.69f1

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.69f2

Заэвтектический деформируемый алюминиевый сплав

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано для изготовления деформированных полуфабрикатов, предназначенных для получения деталей ответственного назначения, работающих в условиях износа и повышенных температур до 300-350°С, в частности...
Тип: Изобретение
Номер охранного документа: 0002795622
Дата охранного документа: 05.05.2023
27.05.2023
№223.018.714a

Способ изготовления заготовок из антифрикционной бронзы литьем с последующей экструзией

Изобретение относится к металлургии цветных металлов, в частности к получению литых заготовок из антифрикционных оловянно-свинцовых бронз типа БрО10С2Н3. Осуществляют экструдирование заготовок на вертикальном или горизонтальном гидравлическом прессе методом прямого прессования со скоростью 1-5...
Тип: Изобретение
Номер охранного документа: 0002760688
Дата охранного документа: 29.11.2021
27.05.2023
№223.018.715a

Способ изготовления литых заготовок из антифрикционной бронзы

Изобретение относится к области металлургии, в частности к способам получения литых заготовок из антифрикционных оловянно-свинцовых бронз, предназначенных для диффузионной сварки со сталью для создания узлов трения средней нагрузки и скоростей скольжения. Способ изготовления литых заготовок из...
Тип: Изобретение
Номер охранного документа: 0002762956
Дата охранного документа: 24.12.2021
+ добавить свой РИД