×
20.03.2013
216.012.2f66

Результат интеллектуальной деятельности: СПОСОБ ВАКУУМНОЙ ТЕРМИЧЕСКОЙ ДЕГАЗАЦИИ ГРАНУЛ ЖАРОПРОЧНЫХ СПЛАВОВ В ПОДВИЖНОМ СЛОЕ

Вид РИД

Изобретение

№ охранного документа
0002477669
Дата охранного документа
20.03.2013
Аннотация: Изобретение относится к порошковой металлургии, в частности к способу термической дегазации гранул жаропрочных сплавов и подготовке их к компактированию. Камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст. и осуществляют дозированную подачу гранул на наклонную поверхность, нагретую до 130-150°С. Термическую дегазацию гранул проводят в подвижном слое толщиной 8-15 монослоев при их передвижении по наклонной поверхности и заполняют гранулами стальную капсулу, нагретую до 400°С и размещенную в вакуумированной камере, и осуществляют ее герметизацию. Обеспечивается эффективное удаление газов и сокращение продолжительности процесса подготовки гранул к компактированию. 1 пр.
Основные результаты: Способ подготовки гранул жаропрочных сплавов к компактированию, включающий вакуумную термическую дегазацию гранул и заполнение гранулами стальной капсулы, отличающийся тем, что камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст., осуществляют дозированную подачу гранул на наклонную поверхность, нагретую до 130-150°С, проводят термическую дегазацию гранул в подвижном слое толщиной 8-15 монослоев при их передвижении по указанной поверхности, заполняют гранулами стальную капсулу, нагретую до 400°С и размещенную в вакуумированной камере, и осуществляют ее герметизацию.

Изобретение относится к области металлургии, а именно - к порошковой металлургии. Способ заключается в вакуумной термической дегазации в летящем (подвижном) потоке гранул в вакууме. Данный способ позволяет эффективно удалять газы, адсорбированные на поверхности гранул, и существенно уменьшить продолжительность процесса.

Известен способ вакуумной термической дегазации гранул, описанный в патенте на вакуумную установку для дегазации гранул (Патент РФ №1007280, B22F 1/06 от 06.01.1981 г.). Дегазация происходит следующим образом: гранулы попадают во вращающийся барабан, где под действием вакуума и температуры происходит десорбция кислорода и влаги с поверхности гранул в вакууме.

Недостатком данного метода является то, что он требует последующей отдельной операции по заполнению капсул гранулами. С целью их дальнейшего использования гранулы необходимо поместить в стальную капсулу для последующей операции компактирования. Разделение операций дегазации и заполнения капсулы ведет к увеличению длительности технологического процесса.

Известен способ дегазации металлургических порошков (Патент США №3954458, B22F 1/00 от 04.04.76 г.). Дегазация порошка происходит в неподвижном слое в вакууме 1·10-3 мм рт.ст при температурном интервале от 232 до 454°C. Этот способ был выбран в качестве прототипа.

Недостатком его является то, что нагрев гранул происходит в вакууме в неподвижном слое, что значительно замедляет этот процесс и, тем самым, увеличивает время дегазации. Это обусловлено тем, что нагрев гранул до температуры, необходимой для десорбции кислорода и влаги с поверхности гранул, происходит в вакууме очень медленно. В вакууме отсутствует передача тепла конвекцией, что приводит к тому, что для нагрева всей массы гранул (особенно в центре) в неподвижном слое требуется большое количество времени. Это приводит как к увеличению времени дегазации, так и к увеличению длительности всего технологического процесса.

В предлагаемом способе учитывается тот факт, что результаты исследования теплофизических свойств гранул и изучение условий нагрева гранул в неподвижном слое в вакууме убедительно свидетельствуют о том, что повысить скорость нагрева гранул можно только в случае уменьшения высоты слоя гранул, в идеале приближаясь к монослою.

Техническое осуществление дегазации в монослое возможно, если гранулы будут скатываться с нагретой металлической поверхности под действием собственного веса или вследствие приложенных к поверхности колебаний. В этом случае можно легко регулировать температуру нагрева гранул и длительность процесса дегазации, а десорбируемые с поверхности гранул газы легко удалить вакуумными насосами. Эта схема дегазации и легла в основу предлагаемого способа.

Предлагаемый способ включает в себя следующие стадии:

- вакуумирование камеры до давления ≤1·10-4 мм рт.ст;

- дозированную подачу гранул из бункера на поверхность, нагретую до температуры 130-150°C;

- вакуумную термическую дегазацию при их перемещении по этой поверхности;

- заполнение нагретой до 400°C стальной капсулы, находящейся в вакуумированной камере;

- герметизация отверстия в капсуле электронно-лучевой сваркой.

Предлагаемый способ объединяет в себе две операции - собственно дегазацию и заполнение капсулы гранулами, причем они происходят одновременно. Это способствует уменьшению длительности общего технологического цикла при производстве изделий из гранул.

Способ заключается в следующем: гранулы хранят в транспортном бункере, заполненном сверхчистым инертным газом (Ar, He), в котором затем создают вакуум на уровне 1,3 Па (~1·10-2 мм рт.ст). Далее гранулы из бункера тонким слоем толщиной в 8-15 монослоев с заданной скоростью поступают по наклонной поверхности в камеру дегазации, вакуум в которой 1,3·10-2 Па (1·10-4 мм рт.ст). На этом этапе происходит полное удаление газов из межгранульного пространства и нагрев гранул. Наличие в камере дегазации вибратора позволяет уплотнять гранулы по мере их поступления в капсулу. При вибрации гранулы перемещаются, форма и размеры каналов в межгранульном пространстве постоянно меняются, в результате газы, находившиеся в пространстве между гранулами, удаляются вакуумными насосами. Затем отверстие, через которое происходило заполнение капсулы гранулами, герметизируют электронно-лучевой сваркой.

ПРИМЕР: Были проведены исследования, показывающие эффективность метода дегазации в летящем (подвижном) слое. Этот метод сравнивали с дегазацией по прототипу - в неподвижном слое в вакууме. Сравнение проводили в двух направлениях: время, необходимое на весь цикл получения герметизированных капсул, и свойства готовых изделий, полученных методом горячего изостатического прессования из гранул, дегазированных вышеуказанными способами.

Режимы способов дегазации указаны ниже:

а) вакуумная термическая дегазация гранул в неподвижном слое (в засыпке):

- создание вакуума 1·10-2 Па в рабочей камере - 1 час;

- нагрев до 400°C - 2 часа;

- выдержка - 5 часов;

- нагрев до 750°C - 2 часа;

- выдержка - 6 часов;

- герметизация капсулы;

б) вакуумная термическая дегазация гранул в летящем (подвижном) слое:

- создание вакуума 1·10-2 Па - 1 час;

- нагрев капсулы до температуры 400°C - 0,25 часа;

- выдержка при температуре 400°C - 1 час;

- заполнение капсулы гранулами - 1,2-1,6 часа;

- герметизация капсулы.

В таблице 1 приведены сравнительные данные по продолжительности технологического цикла производства герметизированных капсул с гранулами по двум вышеупомянутым способам дегазации. В таблице 2 приведены свойства дисков из гранул, дегазированных различными способами.

Из этих таблиц видно, что изделия из гранул, дегазированных в летящем (подвижном) слое в вакууме, обладают примерно одинаковыми механическими свойствами по сравнению с изделиями, изготовленными при дегазации по прототипу. Однако предлагаемый способ имеет существенное преимущество по длительности технологического цикла, что позволяет повысить производительность процесса подготовки гранул к компактированию.

Таблица 2
Свойства дисков, изготовленных из гранул, дегазированных различными способами
Способ вакуумной термической дегазации гранул Температура испытания °C Механические свойства Жаропрочные свойства
σb, кгс/мм2 σ0,2, кгс/мм2 δ, % Ψ,% aн, кгс/см2 Тгл 750°C
δ=85 кгс/мм2
В неподвижном слое в вакууме 20 133,4-140,2 87,9-95,6 24,4-32,0 20,1-30,8 7,2-10,6 60 ч без разрушения, снят с испытания
800 96-111,1 80-86,3 14,0-22,4 16,8-29,6 -
В летящем (подвижном) слое в вакууме 20 133,7-141,7 87,2-95,2 23,2-32,0 19,5-31,9 8,6-11,0 60 ч без разрушения, снят с испытания
800 97,5 -105,2 80,0-90,3 13,6-27,2 18,3-33,0 -

Способ подготовки гранул жаропрочных сплавов к компактированию, включающий вакуумную термическую дегазацию гранул и заполнение гранулами стальной капсулы, отличающийся тем, что камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст., осуществляют дозированную подачу гранул на наклонную поверхность, нагретую до 130-150°С, проводят термическую дегазацию гранул в подвижном слое толщиной 8-15 монослоев при их передвижении по указанной поверхности, заполняют гранулами стальную капсулу, нагретую до 400°С и размещенную в вакуумированной камере, и осуществляют ее герметизацию.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 65.
08.04.2019
№219.016.fece

Деформируемый термически неупрочняемый сплав на основе алюминия

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных узлов космической техники, получаемых...
Тип: Изобретение
Номер охранного документа: 0002416657
Дата охранного документа: 20.04.2011
08.04.2019
№219.016.fecf

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала, преимущественно для токопроводящих и теплопроводных элементов...
Тип: Изобретение
Номер охранного документа: 0002416658
Дата охранного документа: 20.04.2011
19.04.2019
№219.017.2f1e

Плазмотрон

Заявленное изобретение относится к области плазмотронной техники и может быть использовано во всех областях промышленности, где применяются плазмотроны постоянного тока. Заявленный плазмоторн содержит корпус, вольфрамовый катод и соединенное с корпусом сопло-анод с выходным каналом, причем...
Тип: Изобретение
Номер охранного документа: 0002350052
Дата охранного документа: 20.03.2009
09.05.2019
№219.017.49d6

Устройство для удержания проволоки в печи термообработки

Изобретение относится к устройствам для удержания проволоки в печи для термообработки. Устройство содержит вертикальную несущую стойку, жестко закрепленную в центре основания, и надетые на нее в один или несколько ярусов катушки. Каждая катушка снабжена равномерно распределенными по наружной...
Тип: Изобретение
Номер охранного документа: 0002686993
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.561e

Способ определения наличия и размера инородных включений в массе металлических гранул

Использование: для определения наличия и размера инородных включений в массе металлических гранул. Сущность: заключается в том, что определяют наличие и размер инородных включений в массе металлических гранул, размещая на подложке монослой гранул, после чего осуществляют освещение подложки...
Тип: Изобретение
Номер охранного документа: 0002347209
Дата охранного документа: 20.02.2009
18.05.2019
№219.017.562d

Сплав на основе алюминия

Изобретение относится к металлургии легких сплавов на основе алюминия для изготовления деформируемых полуфабрикатов, используемых в качестве конструкционного материала в летательных аппаратах. Сплав содержит следующие компоненты, мас.%: цинк 4,6-5,4, магний 1,6-2,1, медь 0,31-0,50, скандий...
Тип: Изобретение
Номер охранного документа: 0002343219
Дата охранного документа: 10.01.2009
26.05.2019
№219.017.61a9

Способ получения лигатурного материала для комплексного модифицирования структуры слитков из легких сплавов

Изобретение относится к области металлургии и может быть использовано для получения слитков и отливок из алюминиевых и магниевых сплавов, содержащих в своем составе добавки переходных металлов, например цирконий, титан, скандий. Осуществляют приготовление сплава алюминия с переходными металлами...
Тип: Изобретение
Номер охранного документа: 0002455380
Дата охранного документа: 10.07.2012
19.06.2019
№219.017.86dc

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических...
Тип: Изобретение
Номер охранного документа: 0002384637
Дата охранного документа: 20.03.2010
19.06.2019
№219.017.8993

Матрица для многоканального прессования труб и полых профилей

Изобретение предназначено для повышения качества изделий и увеличения производительности процесса получения труб и полых профилей из алюминиевых, магниевых и титановых сплавов, используемых в авиакосмической и других отраслях техники. Матрица включает четное количество консолей, корпус, съемные...
Тип: Изобретение
Номер охранного документа: 0002470730
Дата охранного документа: 27.12.2012
29.06.2019
№219.017.9fe8

Способ получения переменной структуры по сечению порошковой заготовки

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в производстве тяжелонагруженных деталей, работающих в условиях градиента температуры и имеющих переменную по сечению структуру и механические свойства. Заготовку получают путем горячего...
Тип: Изобретение
Номер охранного документа: 0002455115
Дата охранного документа: 10.07.2012
Показаны записи 51-59 из 59.
18.05.2019
№219.017.561e

Способ определения наличия и размера инородных включений в массе металлических гранул

Использование: для определения наличия и размера инородных включений в массе металлических гранул. Сущность: заключается в том, что определяют наличие и размер инородных включений в массе металлических гранул, размещая на подложке монослой гранул, после чего осуществляют освещение подложки...
Тип: Изобретение
Номер охранного документа: 0002347209
Дата охранного документа: 20.02.2009
18.05.2019
№219.017.59fe

Способ термообработки деталей из жаропрочных никелевых сплавов для повышения сопротивления малоцикловой усталости

Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве деталей газотурбинных двигателей (дисков, валов и др.), работающих в условиях жесткого циклического нагружения. Способ термообработки деталей из...
Тип: Изобретение
Номер охранного документа: 0002455383
Дата охранного документа: 10.07.2012
29.05.2019
№219.017.6823

Способ получения изделия из сплава типа вв751п с высокой прочностью и жаропрочностью

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных сплавов на основе никеля, предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях. Предложен способ получения изделия из жаропрочных никелевых...
Тип: Изобретение
Номер охранного документа: 0002453398
Дата охранного документа: 20.06.2012
19.06.2019
№219.017.875f

Жаропрочный порошковый никелевый сплав

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. Может использоваться в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Жаропрочный порошковый никелевый сплав, содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002371495
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.89d7

Способ получения изделий из сложнолегированных жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано в газотурбинных двигателях для изготовления тяжелонагруженных деталей, работающих при повышенных температурах. Предложен способ получения изделия из...
Тип: Изобретение
Номер охранного документа: 0002457924
Дата охранного документа: 10.08.2012
29.06.2019
№219.017.9fe8

Способ получения переменной структуры по сечению порошковой заготовки

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в производстве тяжелонагруженных деталей, работающих в условиях градиента температуры и имеющих переменную по сечению структуру и механические свойства. Заготовку получают путем горячего...
Тип: Изобретение
Номер охранного документа: 0002455115
Дата охранного документа: 10.07.2012
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
+ добавить свой РИД