×
10.03.2013
216.012.2edb

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002477526
Дата охранного документа
10.03.2013
Аннотация: Изобретение относится к области машиностроения, к авиационно-космической технике и может быть использовано при создании различного класса изделий. Техническим результатом является упрощение решений по повышению надежности изделий. Способ включает определение зависимости интенсивности отказов δ от определяющих характеристик, параметров изделия, длительности функционирования t, устранение дефектов, при этом в качестве определяющего параметра вводят ускорение требуемой функции G и устанавливают расчетным или расчетно-экспериментальным путем взаимосвязь между параметрами согласно функционалу: δ=f(δ, α, β, t), где δ - начальное значение интенсивности отказов, , - параметры, обратные величинам скорости и ускорению требуемой функции изделия, его составных частей соответственно; нормируют параметры изделия по интенсивности отказов в цикле испытаний, затем прогнозируют интенсивность отказов на заданное время, цикл и совершенствуют изделие, его элементы изменением их параметров, приводящее к повышению отказоустойчивости, ресурса. 2 н. и 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области машиностроения и авиационно-космической техники и может быть использовано при создании различного класса изделий.

Порядок создания, производства и эксплуатации изделий, в том числе космических комплексов, регламентируется соответствующими нормативными документами и ГОСТами. Основным показателем качества изделия является надежность - свойство изделия сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. Надежность является сложным свойством и состоит из сочетаний свойств, в частности безотказности и долговечности (ГОСТ 27.002.89 «Надежность в технике»).

Существующий способ обеспечения, повышения надежности изделий включает определение интенсивности отказов, длительности функционирования, устранение дефектов и совершенствование изделий и их составных частей. Комплекс взаимосвязанных требований и мероприятий, направленных на выполнение заданных в документации на изделие требований по надежности на соответствующей стадии жизненного цикла, представлен в ГОСТах (ГОСТ 27.410.87 - «Методы контроля показателя надежности и плана контрольных испытаний» и др.) и дан в справочнике Ю.К.Беляев, В.А.Богатырев и др. «Надежность технических систем», М.: Радио и связь, 1985 г. Указанный способ обладает существенным недостатком, а именно эволюционным характером совершенствования изделия, определяемым естественными причинами, особенно в ракетно-космической технике (РКТ), такими как уникальность изделия, малая серия или единичные экземпляры, продолжительность создания (отработки) и его высокая стоимость. Все это ограничивает возможности принятия решений по использованию ряда мероприятий, направленных на совершенствование изделий, в том числе и инновационных.

Известен способ повышения надежности, включающий структурные и физические методы расчета (определения) количественных показателей надежности (безотказности, долговечности) и выбора оптимальных технических решений по совершенствованию изделий (составных частей). Основные положения этого способа изложены в монографии: В.Ф.Грибанов, А.И.Рембеза и др. «Методы отработки ракетно-космических комплексов», М.: Машиностроение, 1995 г. Однако этот способ (аналог) является трудоемким и, кроме того, сам выбор статистических распределений отказов не имеет обоснований. Это приводит к использованию различных распределений не только на отдельных этапах жизненного цикла, но и самих изделий и значительно усложняет поиск решений по повышению надежности изделий. Предлагаемый способ устраняет недостатки существующих способов (аналогов) и направлен на повышение надежности изделий.

Сущность предлагаемого способа заключается в следующем.

Способ повышения надежности изделий, включающий определение зависимости интенсивности отказов δ от определяющих характеристик (параметров) изделия, длительности функционирования t, устранение дефектов, совершенствование изделия и его составляющих элементов, повышающее их отказоустойчивость, ресурс, отличается тем, что дополнительно вводят в качестве определяющего параметра ускорение (торможение) интенсивности отказов G и устанавливают расчетно-экспериментальным путем взаимосвязь между параметрами согласно функционалу:

δ=f(δ0, α, β, t),

где δ0 - начальное значение интенсивности отказов,

, - параметры, обратные величинам скорости и ускорению интенсивности отказов соответственно; нормируют параметры изделия по интенсивности отказов в цикле испытаний, затем прогнозируют интенсивность отказов на заданное время (цикл) и совершенствуют изделие, его элементы изменением их параметров, приводящее к повышению отказоустойчивости, ресурса. При этом определяют дифференциальные и интегральные зависимости интенсивности отказов в апериодическом и колебательном (циклическом) процессах изменения параметров изделия. Кроме того, определяют экспериментальным путем частотно-временной спектр отказов в этих процессах, а нормирование параметров изделия, его элементов осуществляют по динамике изменения целевых функций (значений скорости, ускорения) от воздействия внутренних физических факторов (параметров): электрических, тепловых, механических и внешних: ионизирующих излучений космического пространства, электризация. При этом отказы изделия, его элементов отождествляют с их частотно-амплитудными функционалами, как при воздействии отдельных факторов, так и комплексное их воздействие. Прогнозирование и повышение ресурса осуществляют изменением параметров изделия согласно найденных амплитудно-частотных характеристик отказов в рассматриваемых процессах (стадиях) отработки изделия. При этом повышение ресурса осуществляют ступенчатым процессом, циклическим в начале, и последующей апериодической стадией, а смена стадий происходит с момента времени, удовлетворяющего условию t>t, где t* - граничное значение, с линейной зависимостью приращения ресурса на начальной стадии и нелинейной зависимостью приращения ресурса на апериодической стадии.

В обоснование способа рассмотрим модель изменения (сохранения) количества изделий в группе с одинаковыми свойствами (характеристиками). Это изменение может происходить как за счет отказов при функционировании, так и при восполнении группы. Предположим, что это изменение осуществляется по нелинейному закону и может быть представлено уравнением вида:

где , - производные «y» по времени,

α, β - коэффициенты пропорциональности (обратные величины скорости и ускорения изменения величин «y»).

Решение уравнения (1) представим в виде y=eωt, для которого найдем равенство:

Корнями этого уравнения являются зависимости:

при β≠0 и .

Тогда решением уравнения (1) является функция:

где ,

,

A, B - константы.

Константы определяем из начальных условий:

(при нормировании «y» на единицу при , где y0 - начальное значение числа изделий в группе), для которых получим следующие равенства:

1)

2)

Отсюда найдем константы A и B:

и

Подставив соответствующие значения, получим:

Рассмотрим некоторые особенности решения (4), используя значения констант (9). Можно видеть, что при γ>1 имеем непрерывно возрастающее значение y1→ ∞ при t→ ∞.

При γ=1 константы принимают значения A=0, B=1 и решение постоянно во времени (y1=1).

В диапазоне значений 1>γ>0 константы A и B могут принимать большие значения, при этом величины A и ω2 становятся отрицательными. Этот случай характеризуется тем, что при некоторых параметрах значение y1 может принимать как нулевые, так и положительные, и отрицательные значения. Определим границу изменения знака функции (4) при y1=0:

отсюда

A+Bexp(ω21)t=0, (т.к. и A<0)

найдем и решением является функция:

Это уравнение становится определенным в 2x случаях:

1) β<0 (β- - модуль) при α>0;

2) β>0 и α<0 (α- - модуль).

Далее рассматриваем решение (4) с константами (9). Разложив функции выражения (4) в ряд, найдем:

Подставив соответствующие значения в (12) и проведя преобразования, получим:

а при γ>>1 имеем:

В диапазоне 0<γ<1, приняв γ<<1 и учитывая, что этот вариант характерен при β<0 (β- - модуль) при α>0, то решение (13) имеет вид:

Для β>0 и α<0 (α-_ - модуль) имеем то же уравнение:

Рассмотрим решение уравнения (1) при отрицательном детерминанте (3), т.е. при γ<0, для которого β<0 (β- - модуль) и

Общим решением этого уравнения будет функция:

Константы в выражении (17) определяем, как и ранее из условий (6, 7), из которых получим B=1, . Тогда уравнение (17) запишется в виде:

Обозначим , где и, подставив эти значения в (18), оно приводится к следующему виду:

Рассмотрим выражение (19) - его тригонометрическую часть:

На фиг.1 приведена зависимость F от x1 при γ=1 в одном периоде. Можно видеть, что в одном периоде функция F положительна в диапазоне , а в диапазоне она отрицательна.

Характерными особыми точками являются и , при которых происходит изменение знака функции.

При значении и наблюдается максимум функции (по модулю).

Разложим функцию F в ряд вблизи особой точки , заменив , и tgx1=x1≤1, найдем

которая учитывает особенности ее изменения при определенных параметрах. Разложив exp в ряд и подставив значение F (20) выражение (19) принимает вид:

При этом в выражение (21) введен нормировочный множитель так, чтобы при x1→0, y2→1.

По найденным значениям P1,2=y1,2 найдем относительную долю отказов согласно соотношению:

где коэффициент δ0 является нормированным множителем, определенным принципом соответствия теоретических расчетов экспериментальным значениям вблизи начальных значений. Согласно (22) и соответствующих значений (13) и (21) относительная доля отказов в «апериодическом» режиме описывается соотношением

где , , а

в «колебательном» режиме соотношением

где ,

Можно видеть, что выражения F1,2 представляют собой зависимость относительной доли отказов от частотно-временных параметров x, z и величины γ. По аналогии с атомной физикой об излучении возбужденного атома, сопровождающего переход атома из состояния n в состояние m, согласно бальмеровской формуле hν=En-Em, где En, Em - энергия атома в состоянии n, m; h - постоянная Планка, ν - частота излучения. Можно представить, что отказ - это тоже «излучение», обусловленное переходом системы изделий из одного состояния в другое (М.Борн «Атомная физика» Москва, Мир, 1965 г.). При таком подходе положительные значения F1,2 - это «излучение» с определенным спектром, а при отрицательных значениях - «поглощение», эквивалентное восстановлению устойчивого состояния системы изделий.

При таком предположении из выражений (23), (24) можно выделить характерные спектры «излучения», характеризующиеся целочисленными значениями частот при параметрах, зависящих от интервала времени между этими «излучениями» (отказами).

Так в (23) можно выделить спектр частот:

ν1=nν0,

где , n-=1, 2, 3, … при значениях параметра x≤1÷ и спектр частот , где m=1, 2, 3, … при x≤1÷.

Согласно выражению (24) спектр частот определяется выражением ν3k,

где k=1, 2, 3, …

и значении z≤1 , а также близкое к ν1, где l=1, 2, 3, … и .

Определяем особенности зависимостей (23), (24) при непрерывном изменении параметров. Найдем экстремумы, приравняв к нулю их производные:

При γ≠1 корнями уравнения являются x=0 и x=1.

Значение функции (23) при x=1 и γ<<1 равно F1=1/6.

В диапазоне 0<x<3/2 при γ<1 излучение принимает максимальное значение, так что F1=1/6 вблизи x=1.

При γ>>1 «излучение» происходит при x<3/2 и быстро растет с увеличением x.

В диапазоне значений γ<1 динамику отказов при x< определяет параметр γ, тогда как при γ>1 и x> динамику отказов определяет в основном x при существенном влиянии на излучение и величины γ, пропорциональной γ2. Найдем оптимум выражения (24) при

Обозначив получим или

Корнями этого уравнения являются выражения:

или

В таблице приведены максимальные значения F2 (24) при положительном корне z1 и различных γ1:

γ1 z1 1-z1 1- 1- (1-z1) F2
1 1,00 0,00 1,00 0,00 2,00 0,00 0,00 1,00
1/2 0,77 0,23 1,55 -0,55 2,55 -1,40 -0,32 1,32
1/3 0,72 0,28 2,15 -1,15 3,15 -3,64 -1,03 2,03
1/4 0,70 0,30 2,79 -1,79 3,79 -6,76 -2,05 3,05
1/9 0,67 0,33 6,06 -5,06 7,06 -35,66 -11,67 12,67
3/2 1,26 -0,26 0,84 0,16 1,84 0,29 -0,08 1,08
2 1,54 -0,54 0,77 0,23 1,77 0,41 -0,22 1,22
3 2,10 -1,10 0,70 0,30 1,70 0,51 -0,56 1,56
4 2,67 -1,67 0,67 0,33 1,67 0,56 -0,93 1,93
5 3,24 -2,24 0,65 0,35 1,65 0,58 -1,30 2,30
10 6,12 -5,12 0,61 0,39 1,61 0,63 -3,20 4,20

Из таблицы видно, что максимальная доля отказов («излучение») становится значительной в различных диапазонах частотно-временного интервала. Так, в одном диапазоне параметров 0<γ1≤1 z1 изменяется незначительно и лежит в диапазоне 1≥z≥ а интенсивность отказов (F2) лежит в диапазоне (1÷3) и лишь при γ≤0,1 интенсивность быстро растет. В этом диапазоне параметров величину отказов определяет величина γ1, т.е. отношение z11.

При параметрах γ1≥1 динамику отказов определяет величина z1, тогда как отношение ~0,6÷1 изменяется слабо.

Из динамики изменения отказов от параметров можно утверждать и обратное - частотно-временные параметры определяются интенсивностью отказов. Так, согласно (23) и (24) предельные значения параметров достигают при δ1,20=F1,2δ0≤1. Это обстоятельство дает возможность нормировать введенные параметры по уровню отказов (их скорости, ускорению) в течение определенного времени.

Так, для состояния системы, описываемой выражением (23) при γ-<<1 и x< производные равны:

Положив, для примера, и γ-=1,

найдем . Отсюда получим α=1 и , при которых интервал времени равен t=1 (в относительных единицах).

Таким образом, найденные выражения (23) и (24) позволяют по динамике изменения отказов во времени, определяемой экспериментальным путем, проанализировать введенные динамические параметры группы изделий. Знание этих параметров позволяет по найденным функциональным связям прогнозировать поведение группы изделий во времени и совершенствовать изделие (повышение отказоустойчивости, увеличение ресурса) с учетом изменения этих параметров, т.е. позволяет управлять процессом совершенствования изделия. Поскольку комплексные испытания изделия на отказоустойчивость (ресурс) - процесс длительный и дорогостоящий, то нормирование введенных показателей предлагается осуществлять на других этапах жизненного цикла изделия и его составных частей, в частности на этапах проектных разработок и автономных испытаний по динамике изменения (скорости, ускорения) целевых функций (параметров) изделия (составных частей) при действии различных факторов, как внутренних: электрических, тепловых, механических и др., а также их комплексное воздействие, так и внешних факторов: ионизирующих излучений космического пространства, электризации и др.

Из выражений (23) и (24) видно, что путем простого смещения

переменных величин x, z функции F1, F2 повторяются вместе со значениями δ0, т.е. уравнение и решение инвариантны к смещению координат на постоянную величину. Учитывая это обстоятельство, для простоты анализа и прогнозирования изменения параметров указанные выражения преобразуем к дифференциальному виду:

приняв при этом и

, где .

Как видно из выражения (30), направление процесса отказов (знак производной) зависит от γ2. В дальнейшем, с практической точки зрения, будем рассматривать только затухающие решения, поэтому используем модуль выражения |γ2-1|.

Интегрирование выражения (30) при условии x1=0, δ=0 дает зависимость

а при условии х1=0, δ=δmaxm эта зависимость имеет вид:

В общем случае множитель в экспоненте выражения (31), (32) в силу сделанных допущений может быть величиной a≤1, определяемый экспериментальным путем. При этом показатель степени в экспоненте может лежать в диапазоне 2<к≤4.

Аналогичные частные решения получаем из выражения (24).

Так, после простых преобразований при функция F2 после подстановки соответствующих значений приводится к виду:

где

,

положив при этом и 1-z=Δz→dz=γ-dx- (т.к. ).

Решением уравнения (33) при x_>1 с начальными условиями δ=0 при x-=0 является выражение

а с начальными условиями: δ=δm, x-=0 является выражение

При функция F2 приводится к виду

где (, ), полученному путем упрощающихся допущений:

при 1-y=Δy→dy и 1+y≈1,7 (см. таблицу) и γ1y>1.

Частным решением уравнения (36) является функция

с начальными условиями: δ=0 при x-=0 и ()

и

при δ=δm, x-=0.

В общем случае коэффициент в экспоненте может принимать значения a2≤1, а показатель степени в экспоненте принимать значения, лежащие в диапазоне 1≤n≤4, уточняемый с учетом сделанных допущений в эксперименте. Найденные распределения (31, 32, 34, 35, 37, 38) дают интегральную временную зависимость отказов от частоты и параметра γ1 при «апериодическом», «колебательном» (циклическом) процессах изменения состояния системы изделий. По этим зависимостям возможно оценить (прогнозировать) ресурс (срок активного существования (САС)) изделия, группы изделий, определяемый как предельное значение времени, когда все (почти все) элементы группы выйдут из работоспособного состояния.

Так, положив, что в начальный момент времени система характеризовалась максимальным уровнем отказов, то ко времени уровень отказов должен быть минимальным δ=δmin (задаваемый уровень). Его можно оценить по найденным выражениям в наиболее удобном их представлении. Так, прологарифмировав выражение (32) и извлекая корень, получим:

Подставив значения δmaxmin=3; 103 и a0=1; 0,1 (при n=3), найдем, что правая часть выражения (39) равна 1; 1,9 (для a0=1) и во втором случае - 2,1 и 4 соответственно (для a0=0,1), т.е. она изменяется лишь на несколько единиц при изменении δmaxmin на три порядка величины, а коэффициент a0 на порядок. Поэтому можно принять, что функционал

где 2<n≤4, константа к принимает значения, лежащие в диапазоне 1≤к≤10, инвариантен по отношению к отказам и других причин, определяемых коэффициентом a0. При этом константа к и коэффициент a0 могут быть определены экспериментальным или расчетно-теоретическим путем при нормировании параметров. В этом случае выражение (40) является уравнением состояния (уравнением процесса), определяющим взаимосвязь ресурса с динамическими параметрами системы для апериодического процесса совершенствования изделия, определяемыми их начальными и конечными значениями в этом процессе. Указанный процесс аналогичен известным термодинамическим процессам в газовой динамике с их определяющими параметрами. Аналогичные уравнения состояния системы получаем из выражений (35) и (38) для колебательного (циклического) процесса совершенствования изделия (группы изделий) в виде:

при ,

и

при .

Значения констант в выражениях (41) и (42), так же как в выражении (39), практически не зависят от условий. Так, при δmaxmin=3; 103 и a1=0,1 и фиксированном показателе степени согласно (41) константа лежит в диапазоне ~2,1÷4, а согласно (42) она лежит в диапазоне ~1,7÷4,5 при a2=0,3. Объединяя выражения (41), (42) в общем виде для колебательного процесса, можно записать (43) при γ->0, где лежит в диапазоне 1≤n≤4, а константа принимает значения, лежащие в диапазоне 1≤к2≤10.

Характерной особенностью уравнений процессов (40, 41, 42) является то, что TCAC в основном определяется частотой отказов («излучения»), а не их амплитудным значением. Эта особенность аналогична фотоэффекту - процессу, приводящему к эмиссии электронов при взаимодействии частиц (квантов электромагнитного излучения) с веществом, при котором эмиссия определяется только энергией частиц (квантов), характеризуемой их частотой, и возможна при энергии выше порогового значения (Физическая энциклопедия, т.2, М., Советская энциклопедия, 1990 г.).

В рассматриваемом случае предельным значением «излучения» является величина δmaxmin→1, при которой пороговое значение в отличие от фотоэффекта для «излучения» (отказов) практически отсутствует и «излучение» возможно при любых δmaxmin>1.

Представляет интерес оценить продолжительность времени, необходимого для получения приращения ресурса. Такую зависимость можно получить из дифференциальных выражений (30), (33), (36а), если перейти к частным производным, введя при этом скорость изменения от текущего времени (t) и ресурса (νc) в виде , где .

Тогда, определив на начальном этапе значение и полагая константу постоянной величиной, указанные уравнения позволяют определить приращение CAC (ΔTCAC) за текущий интервал времени.

Так, из уравнения (36a), ограничившись первым членом правой части уравнения, найдем

Отсюда приращение TCAC, равное:

линейно растет со временем.

Так, при k=1, t0=2 года найдем, что прирост ресурса составит ΔTCAC=1 год за 4 года.

Из выражения (36a) видно, что скорость роста ресурса (νc) является квадратичной зависимостью с наличием экстремума в точке , в которой скорость νc принимает максимальное значение

, где

Аналогичную линейную зависимость от времени TCAC получаем по выражению (33), для которого скорость равна при . Нелинейный рост скорости νc (квадратичный) по выражению (30) позволит обеспечить значительный прирост ресурса при x1>1, тогда как при x1<1 этот прирост из-за нелинейности незначительный. Поэтому прирост ресурса в колебательном (циклическом) процессе более значителен, чем в апериодическом процессе при . С увеличением более эффективным становится апериодический процесс. В связи с изложенным, оптимальным процессом для повышения ресурса является ступенчатый процесс с линейным (от времени) приростом ресурса на первых циклах колебательного процесса с последующим ускорением прироста в апериодическом процессе.

Таким образом, предложенный способ позволяет управлять процессом совершенствования изделий на всех этапах жизненного цикла.

Технико-экономическая эффективность способа заключается в существенном сокращении продолжительности разработки (отработки) изделия и широком использовании информационных технологий в процессе создания изделия и возможности его отработки уже на этапах проектных разработок и автономных испытаний.


СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
СПОСОБ ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗДЕЛИЙ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 41-50 из 71.
10.05.2016
№216.015.3aee

Способ соединения космических объектов в космическом пространстве

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе. Вводят в систему...
Тип: Изобретение
Номер охранного документа: 0002583255
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c4b

Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации

Группа изобретений относится к методам и средствам защиты космических объектов от высокоскоростных метеоритных или техногенных частиц. Способ осуществляют устройством в виде набора акустических датчиков (АКД), подключенных к измерительно-расчетному блоку, и высокочастотных антенн. Последние...
Тип: Изобретение
Номер охранного документа: 0002583251
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.472c

Универсальная рабочая камера эйфеля аэрогазодинамической установки

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая...
Тип: Изобретение
Номер охранного документа: 0002585890
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5141

Способ управления движением космического аппарата на активном участке его выведения на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА) реактивными и аэродинамическими средствами. На заключительном этапе реализации способа - после снижения аэродинамической силы до величины меньшего порядка, чем гравитационная - вектором тяги двигателя управляют из условий...
Тип: Изобретение
Номер охранного документа: 0002596004
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.53b5

Способ измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата в условиях, близких к невесомости и устройство для его осуществления

Группа изобретений относится к области измерений параметров движения твердых тел. Способ и устройство для реализации заявленного способа измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата (КА) в условиях, близких к невесомости, включает проведение...
Тип: Изобретение
Номер охранного документа: 0002593935
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5f91

Способ управления движением космического аппарата при посадке в заданную область поверхности планеты

Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере. Способ включает изменение аэродинамического качества КА, обеспечивающее его посадку в заданную область поверхности планеты. Траектория спуска КА делится на два условных участка. На первом из них производят...
Тип: Изобретение
Номер охранного документа: 0002590775
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a8e

Теплозащитное покрытие корпуса летательного аппарата

Изобретение относится к области ракетно-космической техники. Предложенное теплозащитное покрытие (ТЗП) корпуса возвращаемого ЛА содержит намотанную на силовую оболочку по спирали ленту. Лента выполнена из армирующих волокон, пропитана связующим и своей поверхностью расположена под углом к...
Тип: Изобретение
Номер охранного документа: 0002593184
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8030

Тензометрические весы

Изобретение относится к области аэромеханических измерений и может быть использовано в устройстве тензометрических весов, используемых для определения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Заявленные...
Тип: Изобретение
Номер охранного документа: 0002599906
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8e0e

Способ повышения надёжности изделий

Изобретение относится к области машиностроения и авиационно-космической технике и может быть использовано при создании различного класса изделий. Технический результат - повышение надежности изделия и его составных частей. Способ повышения надежности изделия и его составных частей (СЧ),...
Тип: Изобретение
Номер охранного документа: 0002605046
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b7e0

Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через...
Тип: Изобретение
Номер охранного документа: 0002614966
Дата охранного документа: 31.03.2017
Показаны записи 41-50 из 52.
10.05.2016
№216.015.3aee

Способ соединения космических объектов в космическом пространстве

Изобретение относится к способам создания в космосе связки космического аппарата (КА) с космическим объектом (КО). Контролируют положение в пространстве троса (2), развернутого с борта КА (1), используя датчики видеонаблюдения (4) на КА и/или датчики положения (5) на тросе. Вводят в систему...
Тип: Изобретение
Номер охранного документа: 0002583255
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3c4b

Способ определения координат места пробоя корпуса гермоотсека космического объекта частицей природного или техногенного происхождения и устройство для его реализации

Группа изобретений относится к методам и средствам защиты космических объектов от высокоскоростных метеоритных или техногенных частиц. Способ осуществляют устройством в виде набора акустических датчиков (АКД), подключенных к измерительно-расчетному блоку, и высокочастотных антенн. Последние...
Тип: Изобретение
Номер охранного документа: 0002583251
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.472c

Универсальная рабочая камера эйфеля аэрогазодинамической установки

Изобретение относятся к области экспериментальной аэрогазодинамики. Универсальная рабочая камера Эйфеля аэрогазодинамической установки содержит рабочую камеру, источник модельного газа на ее входе, а на выходе камеры - диффузор. В рабочей камере установлена перегородка, образующая...
Тип: Изобретение
Номер охранного документа: 0002585890
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.5141

Способ управления движением космического аппарата на активном участке его выведения на орбиту искусственного спутника планеты

Изобретение относится к управлению движением космического аппарата (КА) реактивными и аэродинамическими средствами. На заключительном этапе реализации способа - после снижения аэродинамической силы до величины меньшего порядка, чем гравитационная - вектором тяги двигателя управляют из условий...
Тип: Изобретение
Номер охранного документа: 0002596004
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.53b5

Способ измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата в условиях, близких к невесомости и устройство для его осуществления

Группа изобретений относится к области измерений параметров движения твердых тел. Способ и устройство для реализации заявленного способа измерения линейных ускорений, угловых скоростей и ускорений на борту космического аппарата (КА) в условиях, близких к невесомости, включает проведение...
Тип: Изобретение
Номер охранного документа: 0002593935
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5f91

Способ управления движением космического аппарата при посадке в заданную область поверхности планеты

Изобретение относится к управлению спуском космического аппарата (КА) в атмосфере. Способ включает изменение аэродинамического качества КА, обеспечивающее его посадку в заданную область поверхности планеты. Траектория спуска КА делится на два условных участка. На первом из них производят...
Тип: Изобретение
Номер охранного документа: 0002590775
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a8e

Теплозащитное покрытие корпуса летательного аппарата

Изобретение относится к области ракетно-космической техники. Предложенное теплозащитное покрытие (ТЗП) корпуса возвращаемого ЛА содержит намотанную на силовую оболочку по спирали ленту. Лента выполнена из армирующих волокон, пропитана связующим и своей поверхностью расположена под углом к...
Тип: Изобретение
Номер охранного документа: 0002593184
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8030

Тензометрические весы

Изобретение относится к области аэромеханических измерений и может быть использовано в устройстве тензометрических весов, используемых для определения составляющих векторов аэродинамической силы и момента, действующих на модели летательных аппаратов в потоке аэродинамической трубы. Заявленные...
Тип: Изобретение
Номер охранного документа: 0002599906
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8e0e

Способ повышения надёжности изделий

Изобретение относится к области машиностроения и авиационно-космической технике и может быть использовано при создании различного класса изделий. Технический результат - повышение надежности изделия и его составных частей. Способ повышения надежности изделия и его составных частей (СЧ),...
Тип: Изобретение
Номер охранного документа: 0002605046
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b7e0

Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через...
Тип: Изобретение
Номер охранного документа: 0002614966
Дата охранного документа: 31.03.2017
+ добавить свой РИД