×
27.02.2013
216.012.2c97

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА РЕНИЙ-188 БЕЗ НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения радиоактивных изотопов медицинского и научного назначения без носителя в радиохимически чистом виде. Способ включает реакторное облучение нейтронами матрицы из оксида вольфрама, ее термическую обработку в среде кислорода до выхода в газовую фазу и конденсации целевого изотопа, извлекаемого затем посредством реагента. Матрицу из оксида вольфрама формируют в виде полого цилиндра, толщина стенки которого составляет не более 3 мм. Устройство содержит контейнер, выполненный в виде двух соосных цилиндров, между стенками которых расположена полость для размещения облучаемого оксида вольфрама, закрытая с одной стороны, и сублимационный аппарат, включающий конденсор и нагреваемую часть с патрубком для подачи кислорода, над которым установлена мембрана. В верхней части соосных цилиндров расположена сквозная трубка для прохождения среды облучения. Технический результат заключается в повышении удельной активности материнского изотопа вольфрам-188, удельной активности дочернего рений-188 путем повышения его химического выхода и количественного осаждения на ограниченной поверхности. 2 н. и 1 з.п. ф-лы, 2 ил.

Изобретение относится к области получения радиоактивных изотопов медицинского и научного назначения без носителя в радиохимически чистом виде, а также для создания радиоизотопных генераторов.

Известны способы получения радиоактивного изотопа рений-188 из облученного нейтронами оксида вольфрама (WO3) или порошка металлического вольфрама с последующим разделением материнского вольфрам-188 и дочернего целевого рений-188.

В большинстве вариантов разделения используют либо экстракционные, либо сорбционные методы [Зыков М.П., Романовский В.Н., Филяшин А.Т. и др. «Экстракционный генератор рения-188» / Труды Радиевого института им.В.Г.Хлопина, т.XII, 2007, с.86-95; Патент RU №2091878, публ. 27.09.1997; Патент US №7329400, публ. 12.02.2008]. Общим недостатком всех этих способов является необходимость проведения длительных и сложных процедур растворения облученных нейтронами образцов вольфрама или его оксида, что приводит к увеличению объемов радиоактивных отходов, загрязнению нежелательными примесями, привнесенными с использованными реагентами, а также повышению себестоимости целевого изотопа за счет применения реагентов. При этом для экстракционных генераторов, использующих органические реагенты, характерно образование продуктов радиолиза, при возможном образовании третьей фазы за счет радиационной полимеризации. В целом это приводит к снижению фактора разделения генераторной пары. Недостатком является и необходимость размещения экстракционных генераторов с блоком растворения в боксах с мощной биологической защитой значительных объемов со сложной системой транспортных и управляющих коммуникаций для подачи реагентов для растворения и экстракции, полученных радиоактивных растворов в экстракторы и отбора рений-содержащих фракций.

Другим известным способом разделения генераторной пары вольфрам-188/рений-188 и получения радиофармацевтического рения-188 без носителя, является термосублимационный метод, основанный на летучести высшего оксида рения (VII) - Re2O7.

Известен способ получения радионуклида рений-188, включающего наработку материнского вольфрам-188 в процессе облучения нейтронами мишени из металлического вольфрама, обогащенного по вольфрам-186 с последующим термохроматографическим выделением рений-188. В данном способе, с целью обеспечения высокой удельной активности целевого радионуклида, используют мишень, обогащенную до 97% по вольфраму-186, что, несмотря на повышение в 3,4 раза выхода целевого рений-188, в десятки раз повышает его себестоимость. При этом каждый раз перед проведением процедуры выделения рения-188 требуется проведение процесса восстановления водородом исходной вольфрамовой мишени до металла [SU №1498288 «Способ получения радионуклида рений-188», публ. 10.05.2000].

Известно устройство, которое было использовано для сублимационного выделения таллия-199 из облученных альфа-частицами золотых мишеней [SU №1468274, публ. 10.10.1996], содержащее нагреваемую кварцевую печь, на дно печи помещают мишень облученной стороной вверх, а над ней устанавливают охлаждаемый водой конденсатор, выполненный из стекла в виде цилиндра. Полученный на стенках конденсатора конденсат таллия смывают физиологическим раствором хлорида натрия. Такая конструкция сублимационного аппарата не подходит для выделения целевого изотопа из мишеней, где радионуклид распределен в массе мишени, а не в поверхностном слое, как в известном способе.

Известен способ получения рений-188 [Патент RU №2102809 «Способ получения радионуклида без носителя», публ. 20.01.1998], выбранный в качестве прототипа, включающий реакторное облучение оксидно-вольфрамовой матрицы нейтронами, ее термическую обработку при температуре полиморфного превращения в течение времени, достаточного для выхода целевого изотопа в газовую фазу, его конденсации и извлечение посредством реагента. В этом способе также используется обогащенная вольфрамом-186 мишень, но восстановитель добавлен непосредственно к материалу мишени. Это делает весьма проблематичным ее повторное использование (облучение, особенно весьма дорогостоящих мишеней из обогащенного вольфрама), поскольку необходимо полное отделение вещества-восстановителя от активируемой матрицы, а при сжигании возможно образование карбидов и загрязнение вольфрама примесями, находящимися в восстановителе, с последующей их активацией. При этом несомненным является тот факт, что происходит частичное восстановление возгоняемого Re2O7 до нелетучих низших окислов снижающего степень выделения рений-188 из мишени.

Устройство для проведения процесса выделения дочернего радиоизотопа [Патент RU №2102809, публ. 20.01.1998], взятое за прототип, содержит контейнер для размещения облучаемого оксида вольфрама, выполненный в виде ампулы, и сублимационный аппарат, выполненный в виде ампулы из кварцевого стекла, открытой с одного конца, другой конец запаян. Запаянным концом ампулу вставляют в трубчатую печь примерно до половины длины. После термической обработки и выхода в газовую фазу радиоактивных атомов они могут быть собраны с помощью холодного предмета - конденсора. Возгоняемый рений-188 в химической форме Re2O7 будет осаждаться на внутренних стенках в части ампулы, имеющей более низкую температуру не компактно, а довольно широким фронтом, так как упругость паров Re2O7 изменяется от 3 мм рт.ст. при 230°С до 711 мм рт.ст. при 360°С [Л.В.Борисова, A.M.Ермаков. Аналитическая химия рения. М.: Наука, 1974, с.20]. При этом весьма затруднителен смыв целевого нуклида требуемым количеством физиологического раствора и невозможность получения радиофармацевтического препарата, свободного от материнского изотопа вольфрам-188, поскольку сублимат и материнский изотоп находятся в одной ампуле.

С другой стороны в прототипе совершенно не учитывается другой важный фактор, непосредственно влияющий на радиоактивность выделяемого целевого нуклида, а именно - эффект самоэкранирования, который характеризует уменьшение плотности потока нейтронов в облучаемой мишени по мере проникновения активирующих нейтронов от поверхности в ее глубину. Расчеты показывают, что на глубине 1 см от поверхности мишени поток активирующих нейтронов практически равен нулю как по тепловой, и тем более по резонансной составляющей нейтронного спектра. В целом это приводит к значительному снижению эффективного сечения активации и, как следствие, активности материнского вольфрам-188.

Задачей предлагаемого изобретения является создание способа и устройства, обеспечивающих повышение радиационного и химического выхода рения-188 из облученных вольфрамовых матриц.

Технический результат заключается в повышении удельной активности материнского изотопа вольфрам-188, удельной активности дочернего рений-188 путем повышения его химического выхода и количественного осаждения на ограниченной поверхности.

Указанный технический результат достигается тем, что в способе получения радионуклида рений-188 без носителя, включающем, как и прототип, реакторное облучение вольфрамсодержащей матрицы нейтронами, ее термическую обработку при температуре полиморфного превращения в течение времени, достаточного для выхода в газовую фазу и конденсации целевого изотопа, извлекаемого затем посредством реагента, в отличие от прототипа матрицу из оксида вольфрама формируют в виде полого цилиндра, толщина стенки которого составляет не более 3 мм, а термическую обработку проводят в среде кислорода.

Технический результат достигается также тем, что в устройстве для осуществления способа, содержащем, как и прототип, контейнер для размещения облучаемого оксида вольфрама и сублимационный аппарат, включающий нагреваемую часть и конденсор, в отличие от прототипа контейнер выполнен в виде двух соосных цилиндров, между стенками которых расположена полость для размещения облучаемого оксида вольфрама, закрытая с одной стороны, при этом расстояние между стенками цилиндров не превышает 3 мм, а в нагреваемой части сублимационного аппарата расположен патрубок для подачи кислорода, над которым размещена мембрана.

Целесообразно, чтобы в верхней части соосных цилиндров была расположена сквозная трубка для прохождения среды облучения.

В предлагаемом способе термосублимационного выделения рения-188, включающем облучение оксида вольфрама природного изотопного состава нейтронами, размещение облученной мишени в устройстве для термической обработки, ее нагревание при температуре изомерного перехода (720-730°С) в атмосфере кислорода. Кислородная среда необходима для доокисления рения и повышения химического выхода возгоняемой формы, так как в материнской матрице вольфрам находится в степени окисления +6, а рений возгоняется в степени окисления +7 (Re2O7).

Изобретение поясняется чертежами. На фиг.1 приведена конструкция контейнера для размещения облучаемого оксида вольфрама, на фиг.2 - сублимационный аппарат.

Контейнер для размещения облучаемого оксида вольфрама (фиг.1) состоит из двух соосных цилиндров 1, 2, выполненных из кварцевых трубок разного диаметра и высоты. При этом внешний диаметр внутреннего цилиндра 1 должен быть как максимум на 3 мм меньше внутреннего диаметра внешнего цилиндра 2. Верхняя часть внутреннего цилиндра 1 герметично запаяна, в нижней части контейнера герметично устанавливается кварцевое кольцо 3, которое припаивается к внешнему и внутреннему цилиндрам 2, 1. В верхней части внутреннего цилиндра 1 расположен герметичный патрубок 4, соединяющий внутреннюю полость внутреннего цилиндра с внешней поверхностью внешнего цилиндра 2. Данный патрубок 4 необходим для прохождения среды облучения. Через открытую верхнюю часть ампулы проводят заполнение оксидом вольфрама полости между внутренней стенкой внешнего кварцевого цилиндра 2 и внешней стенкой внутреннего цилиндра 1. После заполнения верхняя часть внешнего цилиндра 2 контейнера герметично запаивается. Заполненный и запаянный контейнер помещается в экспериментальный канал реактора для облучения.

Сублимационный аппарат (фиг.2) состоит из внешнего кварцевого стакана 5, съемного охлаждаемого конденсора 6, выполненного из кварца и пористой кварцевой мембраны 7, которая герметично припаяна к внутренним стенкам в нижней части кварцевого стакана 5. В нижней части стакана 5 под мембраной 7 расположен патрубок 8 для подачи кислорода. Мембрана 7 обеспечивает равномерную подачу кислорода по объему облученного материала.

Предлагаемый способ получения целевого радионуклида с более высокой удельной активностью заключается в следующем. Образец из оксида вольфрама помещают в кварцевый контейнер (фиг.1), в котором облучаемый материал формируется в виде полого цилиндра. Это позволяет значительно снизить, как показывают расчеты и данные экспериментов, влияние эффекта самоэкранирования нейтронного потока (эффект поглощения тепловых и резонансных нейтронов веществом облучаемого объекта особенно с большим, более 1 барн, сечением поглощения) и получить более высокие значения удельных активностей при одинаковом интегральном потоке нейтронов и массе образца.

После вскрытия контейнера с облученным оксидом вольфрама его содержимое переносят внутрь кварцевого стакана 5, установленного в нагревательном устройстве, и равномерно распределяют по поверхности мембраны 7. Затем в стакан 5 помещают конденсор 6 на расстоянии 10-12 мм над поверхностью облученного WO3 и фиксируют. Затем включают нагреватель и начинают процесс термосублимации, во время которого поступающий поток кислорода обеспечивает доокисление рения-188 до возгоняемой химической формы Re2O7. После проведения процесса отключают нагревательное устройство, вынимают конденсор 6 и смывают рений-188 0,9% водным раствором хлорида натрия, аликвотную часть которого берут для измерения удельной активности.

Предлагаемый способ выделения радиоизотопа, основанный на термическом воздействии на облученную матрицу из оксида вольфрама и на явлении термической сублимации образующегося в процессе радиоактивного распада вольфрама-188, дочернего изотопа рений-188, в виде высшего оксида, не предусматривает сложных и длительных многостадийных физико-химических процедур растворения облученной матрицы и операции с радиоактивными растворами. При этом практически полностью отсутствуют радиоактивные отходы и выбросы радионуклида в атмосферу.

Использование предложенного устройства обеспечивает компактное осаждение целевого радионуклида на ограниченной поверхности и, следовательно, его более высокой удельной активности.

Преимуществом заявляемой группы изобретений является и то, что в сравнении с прототипом используется дешевый исходный материал в виде оксида вольфрама, содержащего только природную смесь изотопов, а более высокая удельная активность получаемого материнского изотопа обеспечивается конструкцией ампулы для облучения, формирующей необходимую конфигурацию мишеней из оксида вольфрама и обеспечивающей снижение влияния эффекта самопоглощения нейтронов.

Сущность предлагаемого изобретения подтверждается следующими примерами.

Пример 1. Облученный, в обычной кварцевой ампуле, потоком нейтронов оксид вольфрама, массой 25 г, природного изотопного состава помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп, без продувки кислородом, в течение одного часа при температуре полиморфного перехода около 730-735°С. Конденсор вынимали из устройства и смывали рений-188 0,9% раствором хлорида натрия. В результате проведения процесса было выделено около 75% атомов рений-188 от исходного равновесного количества, накопленного в мишени. При этом остаточная активность рения-188 на конденсоре составила менее 0,5%.

Пример 2. Облученный в контейнере, позволяющем сформировать облучаемый материал в виде полого цилиндра с толщиной слоя 5 мм, тем же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп в течение того же времени и при условиях, что и в примере 1. Смыв рения-188 с конденсора осуществляли тем же объемом 0,9% раствора хлорида натрия. Полученная удельная активность на 18% превышала соответствующее значение, полученное в предыдущем примере, при том же химическом и радионуклидном выходе.

Пример 3. Облученный в разработанной специальном контейнере тем же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава, сформированный в виде полого цилиндра с толщиной слоя облучаемого материала 3 мм, помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп в течение того же времени и условиях, что и в примере 1. Смыв рения-188 с конденсора осуществляли тем же объемом 0,9% раствора хлорида натрия. Полученная удельная активность на 36% превышала соответствующее значение, полученное в предыдущем примере, при том же химическом и радионуклидном выходе.

Пример 4. Облученный в контейнере, изготовленном по заявляемой конструкции, теми же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава помещали в устройство для термосублимационного выделения рения и отгоняли целевой изотоп в атмосфере кислорода при температуре около 735°С в течение времени, что и в примере 1. Конденсор вынимали и смывали целевой рений-188 двумя миллилитрами 0,9% раствора хлорида натрия. В результате проведения процесса было выделено около 90% атомов рений-188 от исходного равновесного количества, накопленного в мишени, т.е. повысился радиохимический выход целевого изотопа на величину около 15%.

Таким образом, предлагаемый способ позволяет значительно повысить радиационный выход (т.е. активность) материнского изотопа вольфрам-188 за счет облучения вольфрамовой мишени, сформированной в виде полого цилиндра толщиной не более 3 мм, а за счет продувки кислорода во время процесса термической обработки повысить эффективность выделения рения-188 из облученных вольфрамовых матриц.


СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА РЕНИЙ-188 БЕЗ НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА РЕНИЙ-188 БЕЗ НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 153.
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf3

Способ количественного определения афлатоксина в1 методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин...
Тип: Изобретение
Номер охранного документа: 0002534732
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d2f

Способ получения фторида водорода из отходов алюминиевого производства

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно...
Тип: Изобретение
Номер охранного документа: 0002534792
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d82

Шихта для получения пинкового пигмента со структурой оловянного сфена

Изобретение относится к керамическому производству, в частности, к получению керамических пигментов. Техническим результатом изобретения является понижение температуры синтеза пигмента, удешевление керамических пигментов и утилизация отхода производства глинозема. Шихта для получения пинкового...
Тип: Изобретение
Номер охранного документа: 0002534875
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8b

Композиция с антиоксидантной и антибактериальной активностью

Изобретение относится к области медицины и представляет собой композицию, обладающую антиоксидантной и антибактериальной активностью, включающую аскорбат лития, отличающуюся тем, что дополнительно содержит бензоат лития при следующем соотношении компонентов, мас.%: аскорбат лития - 50; бензоат...
Тип: Изобретение
Номер охранного документа: 0002535140
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
Показаны записи 51-60 из 249.
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f60

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец,...
Тип: Изобретение
Номер охранного документа: 0002498281
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8065

Коаксиальный магнитоплазменный ускоритель

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит...
Тип: Изобретение
Номер охранного документа: 0002498542
Дата охранного документа: 10.11.2013
+ добавить свой РИД