×
27.02.2013
216.012.2be1

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002476760
Дата охранного документа
27.02.2013
Аннотация: Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для пожаротушения, имеющее баллон с огнетушащим веществом и устройство для определения его массы в баллоне, содержит датчик массы и электронный блок. Датчик массы выполнен в виде отрезка коаксиальной длинной линии, образованной совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы, между нижними концами которых подключено реактивное сопротивление. Реактивное сопротивление может быть выполнено равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным. Техническим результатом является повышение точности определения массы огнетушащего вещества. 2 з.п. ф-лы, 2 ил.

Изобретение относится к противопожарной технике и может быть использовано в качестве средства пожаротушения с высокоточным определением массы огнетушащего вещества, в частности диоксида углерода, в баллоне и ее уменьшения вследствие возможной утечки из баллона.

Известны различные устройства для пожаротушения, в которых возможное уменьшение массы газа вследствие его утечки из баллона определяют путем взвешивания баллона. Недостатками таких устройств являются их неудобство в эксплуатации, необходимость периодической поверки весов, высокая стоимость и ограниченная область применения, обусловленная невозможностью непрерывного контроля возможной утечки огнетушащего вещества из баллона. Устройства с поплавковыми уровнемерами (US 4560450, 24.12.1985) являются громоздкими, неточными и, более того, неработоспособными при реальных условиях эксплуатации баллонов, характеризуемых наличием жидкой и газовой фаз огнетушащего вещества, относительное содержание которых не является постоянным. Известные устройства с емкостными уровнемерами (US 5701932, 30.12.1997; DE 3731793, 03.03.1989) не являются высокоточными, поскольку применимы лишь при наличии четкой границы раздела жидкой и газовой фаз вещества, что не имеет место в реальных условиях эксплуатации баллонов с огнетушащими веществами.

Известно также техническое решение (RU 2266464 С2, 10.11.2004; аналог - US 6836217 В2, 28.12.2004), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип имеет баллон с огнетушащим веществом (диоксидом углерода) и устройство для определения его массы в баллоне, содержащее емкостный датчик массы, образованный совокупностью сифонной трубки в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, а также электронный блок.

Недостатком этого устройства-прототипа является невысокая точность измерения.

Это обусловлено следующим. В данном известном емкостном датчике массы огнетушащего вещества в баллоне при конструктивном исполнении требуется наличие малого зазора (1÷2 мм) между двумя внутренним и наружным проводниками коаксиальной линии для обеспечения значения электрической емкости 50÷150 пФ. Такая электрическая емкость необходима для получения достаточной чувствительности емкостного датчика, работающего на частотах килогерцового диапазона: погрешность электронного преобразователя емкости составляет ~ 0,1÷0,5 пФ, поэтому при использовании датчика с малой величиной электрической емкости возникает большая погрешность измерения (несколько процентов). Кроме того, при малом зазоре между проводниками емкостного датчика существует опасность замыкания этих проводников между собой примесями (металлической стружкой, каплями воды и др.).

Точность изготовления электродов (труб) датчика составляет по диаметру ~ 0,1 мм. Это значит, что на практике номинируемый зазор (1-2 мм) выполнить с отклонением <5% (т.е. 0,1 мм) технологически весьма трудно. Из-за разброса диаметров изготавливаемых труб (сифонной трубки, соосной с ней металлической трубы) имеет место соответствующий разброс значений погонной (т.е. на единицу длины) электрической емкости датчика (~ 5%). Кроме того, из-за неточности сборки конструкций датчиков может иметь место и смещение относительно продольной осевой линии данных проводников относительно друг друга. А это приводит к значительной погрешности измерения массы огнетушащего вещества в баллоне, поскольку зазор между данными проводниками имеет малую величину. Следовательно, чем больше указанный зазор, тем меньше погрешность измерения, обусловленная неточностью изготовления и сборки датчиков.

Техническим результатом предлагаемого изобретения является повышение точности определения массы огнетушащего вещества.

Технический результат достигается тем, что предлагаемое устройство для пожаротушения, имеющее баллон с огнетушащим веществом и устройство для определения его массы в баллоне, содержащее датчик массы, образованный совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы, и электронный блок, при этом между нижними концами сифонной трубки и металлической трубы подключено реактивное сопротивление. Реактивное сопротивление может быть выполнено равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным.

На фиг.1 изображена функциональная схема устройства. На фиг.2а, 2б, 2в - варианты эквивалентных электрических схем датчиков массы огнетушащего вещества.

Здесь введены обозначения: 1 - баллон, 2 - сифонная трубка, 3 - металлическая труба, 4 - диэлектрическая шайба, 5 - горловина, 6 - электронный блок, 7 и 8 - проводники, 9 - кран, 10 - трубопровод, 11 - короткозамыкатель.

Устройство работает следующим образом.

В баллоне 1 с огнетушащим веществом (диоксидом углерода и др.), содержащим металлическую сифонную трубку 2, вокруг последней и соосно с ней размещается металлическая труба 3. При этом сифонная трубка 2 и металлическая труба 3 являются соответственно внутренним и наружным проводниками отрезка коаксиальной длинной линии - датчика массы огнетушащего вещества. Жесткость конструкции коаксиального датчика, т.е. соосность металлической трубы 3 и сифонной трубки 2, обеспечивается с помощью нескольких (1÷4) диэлектрических шайб 4 (изготовленных из полиамида или фторопласта; в этих шайбах имеются сквозные отверстия для прохождения жидкости с целью обеспечения значения уровня жидкости в датчике равным его значению в баллоне), устанавливаемых равномерно вдоль длины датчика (на рисунке показана только одна такая шайба). Баллон 1 имеет в верхней части горловину 5, через герметичные отверстия в них с помощью проводников 7 и 8 соответственно верхний конец металлической трубы 3 и сифонная трубка 2 подсоединены к электронному блоку 6. Электронный блок 6 содержит генератор высокочастотных электромагнитных колебаний, микропроцессор для измерения и преобразования резонансной частоты электромагнитных колебаний отрезка длинной линии, а также микропроцессор для функциональной обработки информативного сигнала от коаксиального датчика массы огнетушащего вещества. Электронный блок 6 имеет разъем для подсоединения к этому блоку источника питания, последовательного интерфейса, сигнализации предельных значений массы огнетушащего вещества. На верхнем конце баллона имеется кран 9 на трубопроводе 10 для выпуска вещества. Нижние концы проводников 2 и 3 отрезка данной длинной линии соединены посредством реактивного сопротивления. В частном случае величина этого сопротивления может быть равным нулю, и в этом случае эти нижние концы замкнуты накоротко с помощью короткозамыкателя 11, как это показано на фиг.1.

Уровень жидкой фазы диоксида углерода в баллоне зависит от температуры: чем выше температура, тем выше и уровень жидкости, вплоть до полного заполнения баллона при некоторой температуре, близкой к критической температуре, и ее более высоких значениях.

Переход к более высоким частотам (мегагерцевого диапазона частот) работы датчика, являющегося в этом случае радиочастотным датчиком, обеспечивает возможность увеличения зазора между проводниками радиочастотного датчика массы огнетушащего вещества.

В отличие от емкостного датчика в данном случае имеет место процесс распространения электромагнитной волны вдоль отрезка длинной линии, являющегося высокочастотным резонатором, с образованием в нем стоячей волны.

В предлагаемом радиочастотном датчике его электрическая емкость может быть достаточно малой, составляя ~ 10÷40 пФ, поскольку абсолютная погрешность электронного блока составляет ~ 0,01÷0,03 пФ. Это позволяет иметь зазор 4÷5 мм между сифонной трубкой 2 и металлической трубой 3 (наружный электрод коаксиального датчика, которым является металлическая труба 3, имеет диаметр 34÷36 мм). При таком большом зазоре между металлической трубой 3 и сифонной трубкой 1 возможные загрязнения не могут приводить к закорачиванию этих проводников между собой, обеспечивая необходимую точность измерения и надежность датчика массы.

На нижнем конце отрезка длинной линии можно подключать различные реактивные сопротивления Zн. Так, такое сопротивление может быть равным нулю (Zн=0) при замыкании накоротко проводников отрезка длинной линии, т.е. сифонной трубки и соосной с ней металлической трубы. При этом обеспечивается повышенная жесткость конструкции датчика. Реактивное сопротивление Zн на нижнем конце отрезка длинной линии может быть выполнено, в частности, и в виде сосредоточенного индуктивного сопротивления (катушки индуктивности) Lн (т.е Zн=Lн) и др. Выбор того или иного реактивного сопротивления Zн и его величины позволяет управлять поведением выходной характеристики - зависимостью резонансной частоты f электромагнитных колебаний рассматриваемого отрезка длинной линии от массы М огнетушащего вещества. Например, такая выходная характеристика f(M) может быть линейной.

Датчики, изображенные на фиг.2а, 2б, 2в, представляют собой, отрезки коаксиальной длинной линии, соответственно нагруженной на одном (нижнем) конце на реактивное сопротивление Zн; короткозамкнутой на одном (нижнем) из концов и нагруженной на одном (нижнем) конце на индуктивное сопротивление Lн. Одним из концов каждый из этих отрезков линии подключен к электронному блоку, осуществляющему возбуждение в отрезке линии электромагнитных колебаний и измерение его информативного параметра - резонансной частоты f как функции уровня z огнетушащего вещества (диоксида углерода и др.) в баллоне.

Приведем соотношения, описывающие зависимость f(z) для отрезков длинной линии с различными реактивными нагрузками, а именно короткозамкнутого на одном из концов и имеющего на конце отрезка длинной линии индуктивность (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. 280 с.).

1. Для отрезка длинной линии, короткозамкнутого на одном из концов (в этом случае zн=0) - в данном случае нижнем конце (фиг.2б), будем иметь следующее выражение для зависимости f(z):

Здесь ε - диэлектрическая проницаемость жидкой фазы огнетушащего вещества; l - длина отрезка длинной линии, определяемая в данном случае длиной сифонной трубки и соосной с ней металлической трубы; эту длину можно считать равной практически высоте баллона; f0 - начальное значение резонансной частоты f при номинальном значении ε, например, ε=1 (это соответствует отсутствию огнетушащего вещества в баллоне).

В соответствии с этой формулой датчик имеет минимальную чувствительность к уровню (и массе) в нижней части баллона; эта чувствительность монотонно возрастает с высотой баллона и достигает максимума при полном заполнении баллона огнетушащим веществом. То есть максимальная чувствительность обеспечивается именно там, где и необходимо контролировать наличие утечки вещества из баллона - в его верхней части.

Если отрезок длинной линии полностью заполнен контролируемой жидкостью, то z=l и данная формула выражает в этом случае зависимость f(z): .

Для короткозамкнутого на одном из концов отрезка

значения f0 резонансной частоты f (при ε=1): , где с=3·108 м/с - скорость света. Отрезок длинной линии является в данном случае четвертьволновым (то есть вдоль его длины укладывается четверть длины стоячей электромагнитной волны в рассматриваемом резонаторе).

2. Подключение на конце отрезка длинной линии индуктивности Lн (фиг.2в) эквивалентно удлинению короткозамкнутого на одном конце отрезка длинной линии на некоторую величину. Вследствие этого происходит изменение распределения напряженности электрического и магнитного полей стоячей волны вдоль отрезка длинной линии. Эквивалентное удлинение lэ погруженной в контролируемую жидкость части отрезка длинной линии равно . С учетом этого значения lэ формулу для случая полного заполнения баллона огнетушащим веществом можно записать в следующем виде:

Решая данное уравнение, можно найти зависимость f(ε). Выбором Lн можно управлять поведением кривой f(z) и, в частности, кривой f(ε), соответствующей полному заполнению баллона огнетушащим веществом; например, можно получить линейную зависимость f(z).

С учетом вышеприведенных соотношений возможно осуществлять синтез датчиков массы с заданной выходной характеристикой.

Таким образом, в предлагаемом устройстве датчик массы выполнен в виде отрезка коаксиальной длинной линии, который образован совокупностью сифонной трубки и соосно по отношению к ней расположенной снаружи металлической трубы; между нижними концами проводников отрезка длинной линии подключено реактивное сопротивление, выполняемое равным нулю при замыкании накоротко нижних концов сифонной трубки и металлической трубы или индуктивным. В предлагаемом устройстве возможно существенно увеличить зазор между внутренним и внешним проводниками отрезка длинной линии - сифонной трубкой и соосной с ней металлической трубой, возможно управлять выходной характеристикой датчика массы.

Предлагаемое устройство позволяет существенно повысить точность измерения массы огнетушащего вещества. Данное устройство применимо при использовании в качестве огнетушащего вещества как диоксида углерода, так и других веществ.


УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ
УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 142.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
20.02.2019
№219.016.c2f6

Магниторезистивная головка-градиометр

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом. Техническим результатом является создание магниторезистивной головки-градиометра на основе металлической ферромагнитной наноструктуры с планарным протеканием...
Тип: Изобретение
Номер охранного документа: 0002403652
Дата охранного документа: 10.11.2010
23.02.2019
№219.016.c647

Способ управления движением судна

Изобретение относится к области судовождения. Автоматическое управление движением судна обычно осуществляется с помощью кормового руля достаточно эффективно, но при наличии нескольких гребных винтов, а также при волнении моря или ветре качество управления падает. Предложенный способ позволяет...
Тип: Изобретение
Номер охранного документа: 0002388650
Дата охранного документа: 10.05.2010
23.02.2019
№219.016.c64b

Способ измерения объемного содержания нефти и воды в потоке нефтеводяной эмульсии в трубопроводе

В резонаторе (4), встроенном в измерительный участок (1) трубопровода (2), возбуждают электромагнитные колебания и формируют два сигнала, частота одного из которых пропорциональна собственной (резонансной) частоте колебаний резонатора, а частота другого - его добротности. По резонансной частоте...
Тип: Изобретение
Номер охранного документа: 0002410672
Дата охранного документа: 27.01.2011
23.02.2019
№219.016.c660

Устройство для измерения массы сжиженного газа в замкнутом резервуаре

Изобретение относится к электромагнитным методам контроля и измерения и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии. Сущность: устройство содержит резонатор, выполненный в виде непрерывной щелевой линии на стенке...
Тип: Изобретение
Номер охранного документа: 0002427805
Дата охранного документа: 27.08.2011
Показаны записи 61-70 из 99.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
+ добавить свой РИД