×
20.02.2013
216.012.284a

Результат интеллектуальной деятельности: СПОСОБ ОБЕСПЕЧЕНИЯ ВИБРАЦИОННОЙ ПРОЧНОСТИ ДЕТАЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002475834
Дата охранного документа
20.02.2013
Аннотация: Изобретение относится к способам обеспечения вибрационной прочности деталей сложной геометрической формы. Техническим результатом является корректировка вибрационных характеристик детали путем изменения геометрии конкретного места на детали для обеспечения ее вибрационной прочности. Определяют вибрационные характеристики детали и накладывают граничные условия с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе. Строят конечно-элементные модели с различным числом конечных элементов, выполняют их модальный анализ. На выбранной конечно-элементной модели выбирают узлы наблюдения и узлы возбуждения, прикладывают в узлах возбуждения сосредоточенные силы, определяют перемещения узлов наблюдения под действием приложенных сил и определяют значения статической податливости в узлах наблюдения путем модального анализа, затем дополнительно определяют значения статической податливости конструкции путем статического анализа в этих же узлах наблюдения, что и при модальном анализе, производят сравнение значений статической податливости, полученных путем модального и статического анализов, определяют узлы наблюдения, где полученные значения статической податливости различны, сопоставляют конечно-элементную модель с деталью, определяют на детали области, соответствующие расположению этих узлов, и корректируют вибрационные характеристики детали путем изменения ее геометрии в областях, содержащих эти узлы наблюдения. 1 ил.
Основные результаты: Способ обеспечения вибрационной прочности деталей сложной геометрической формы, при котором расчетно-экспериментальным путем определяют ее вибрационные характеристики и накладывают граничные условия с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе, затем строят конечно-элементные модели с различным числом конечных элементов, выполняют их модальный анализ, при проведении которого определяют частоты собственных колебаний моделей и выбирают модель, где погрешность определения частоты колебания детали меньше величины ее максимального отклонения от среднего значения, определенного экспериментальным путем, отличающийся тем, что на выбранной конечно-элементной модели выбирают узлы наблюдения и узлы возбуждения, прикладывают в узлах возбуждения сосредоточенные силы, определяют перемещения узлов наблюдения под действием приложенных сил и определяют значения статической податливости в узлах наблюдения путем модального анализа, затем дополнительно определяют значения статической податливости путем статического анализа в этих же узлах наблюдения, что и при модальном анализе, производят сравнение значений статической податливости, полученных путем модального и статического анализов, определяют узлы наблюдения, где полученные значения статической податливости различны, сопоставляют конечно-элементную модель с деталью, определяют на детали области, соответствующие расположению этих узлов, и корректируют вибрационные характеристики детали путем изменения ее геометрии в областях, содержащих эти узлы наблюдения.

Предлагаемое изобретение относится к способам обеспечения вибрационной прочности деталей сложной геометрической формы, испытывающих переменные нагрузки, и может найти применение в различных отраслях машиностроения, в частности в авиадвигателестроении, для обеспечения вибрационной прочности дисков роторов и рабочих лопаток газотурбинных двигателей (ГТД), которые являются наиболее нагруженными и уязвимыми элементами при их изготовлении, доводке и ремонте.

Известен способ определения элементов низкой точности модели конструкции (заявка РФ на изобретение №2005140706, опубл. 20.07.2007).

Известен способ определения элементов низкой точности модели конструкции (В.В.Воинова, А.А.Лысенко, А.Л.Михайлов. Оценка качества построения конечно-элементных моделей по критерию точности расчетов напряженно-деформированного состояния упругих тел программным комплексом ANSYS. Вестник РГАТА №3(18), 2010 г., г.Рыбинск: РГАТА. - С.100-105).

Известен способ обеспечения вибрационной прочности детали сложной геометрической формы (конструкции), при котором расчетным путем определяют ее вибрационные характеристики, частотные спектры и основные формы колебаний с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе. Затем определяют эти характеристики экспериментально путем прямого тензометрирования в составе двигателя. В случае расхождения данных корректируют их изменением геометрии детали, за счет чего изменяют спектр частот собственных колебаний и отстраивают деталь от возможных резонансов с большими переменными нагрузками на основных рабочих режимах (Михайлов А.Л. Проектирование и вибродиагностика деталей ГТД на основе исследования объемного напряженно-деформированного состояния / Под ред. доктора техн. наук, профессора В.М.Чепкина. - Рыбинск: РГАТА, 2005. - С.132-134).

Недостатком способа является то, что результаты расчета хорошо согласуются с экспериментальными значениями только в конкретных частных случаях для определенных конструкций деталей и в большинстве случаев необходима корректировка геометрии детали, но конкретное место, требующее корректировки, таким способом определить невозможно.

Наиболее близким по количеству сходных признаков является способ обеспечения вибрационной прочности детали сложной геометрической формы, при котором экспериментально-расчетным путем определяют вибрационные характеристики ее элементов, накладывают на них граничные условия с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе. Затем строят конечно-элементные модели с различным числом конечных элементов, определяют собственные частоты колебания элементов модели, сравнивают их и выбирают модель, где погрешность определения частоты колебания меньше величины ее максимального отклонения от среднего значения, определенного экспериментальным путем. Такое отклонение говорит о наличии отклонений в геометрии изделия, лежащих в пределах поля допуска при его изготовлении, и обеспечивает требуемую вибрационную прочность (Михайлов А.Л. Проектирование и вибродиагностика деталей ГТД на основе исследования объемного напряженно-деформированного состояния / Под ред. доктора техн. наук, профессора В.М.Чепкина. - Рыбинск: РГАТА, 2005. - С.134-140.)

Недостатком данного способа является то, что в случае значительного расхождения значений частот собственных колебаний делают вывод о наличии отклонений в геометрии детали, лежащих за пределами поля допуска при ее изготовлении, снижающих ее вибрационную прочность. В этом случае требуется корректировка геометрии детали, но, как и в предыдущем способе, место на детали, требующее корректировки, не определено.

Техническим результатом, на достижение которого направлено изобретение, является определение конкретного места на детали, геометрия которого подлежит корректировке, для обеспечения требуемых вибрационных характеристик.

Заявленный технический результат достигается тем, что при реализации способа обеспечения вибрационной прочности детали сложной геометрической формы расчетно-экспериментальным путем определяют ее вибрационные характеристики и накладывают граничные условия с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе, Затем строят конечно-элементные модели с различным числом конечных элементов, выполняют их модальный анализ. При проведении модального анализа определяют частоты собственных колебаний моделей и выбирают модель, где погрешность определения частоты колебания детали меньше величины ее максимального отклонения от среднего значения, определенного экспериментальным путем.

Новым в предлагаемом способе является то, что на выбранной конечно-элементной модели выбирают узлы наблюдения и узлы возбуждения, прикладывают в узлах возбуждения сосредоточенные силы, определяют перемещения узлов наблюдения под действием приложенных сил и определяют значения статической податливости в узлах наблюдения путем модального анализа, затем дополнительно определяют значения статической податливости конструкции путем статического анализа в этих же узлах наблюдения, что и при модальном анализе, производят сравнение значений статической податливости, полученных путем модального и статического анализов, определяют узлы наблюдения, где полученные значения статической податливости различны, сопоставляют конечно-элементную модель с деталью, определяют на детали области, соответствующие расположению этих узлов, и корректируют вибрационные характеристики детали путем изменения ее геометрии в областях, содержащих эти узлы наблюдения.

На прилагаемом чертеже схематично изображена конечно-элементная модель исследуемых образцов.

Заявляемый способ реализуется следующим образом.

Экспериментальным путем определяют вибрационные характеристики: частоты и формы собственных колебаний детали, например лопатки газотурбинного двигателя, путем прямого тензометрирования в составе двигателя. Накладывают граничные условия с учетом силовых нагрузок и температур, воздействующих на нее при работе. При помощи процедур, входящих в состав вычислительного комплекса (например, ANSYS), строят конечно-элементные модели с различным числом конечных элементов и выполняют их модальный анализ. При проведении модального анализа определяют первые n частот собственных колебаний моделей, сравнивают эти частоты и выбирают модель, где погрешность определения частоты колебания детали меньше величины ее максимального отклонения от среднего значения, определенного экспериментальным путем.

На выбранной конечно-элементной модели выбирают узлы наблюдения и узлы возбуждения, прикладывают в узлах возбуждения сосредоточенные силы, определяют перемещения узлов наблюдения под действием приложенных сил и определяют значения статической податливости конструкции в одних и тех же узлах наблюдения.

Сначала определяют статическую податливость путем модального анализа по формуле:

где - эквивалентная масса конструкции, ωk - частоты собственных

колебаний конструкции, k - номер формы колебаний, i - номер узла возбуждения (узла приложения сосредоточенной силы), j - номер узла наблюдения (узла, в котором определяется перемещение конструкции под действием сосредоточенной силы).

Затем определяют статическую податливость путем статического анализа по формуле:

где yj - перемещение j-узла под действием сосредоточенной силы Pj, приложенной к j-узлу.

Затем производят сравнение значений статической податливости, полученных путем модального и статического анализов, определяют узлы наблюдения, где полученные значения статической податливости различны, сопоставляют конечно-элементную модель с деталью, вибрационные характеристики которой требуют корректировки, определяют на детали области, соответствующие расположению этих узлов, и корректируют вибрационные характеристики детали, для чего изменяют ее геометрию в этих областях и приводят вибрационные характеристики в соответствие с нормированными запасами прочности. Изменение геометрии выполняют путем съема металла или его добавлением, например наплавкой, напайкой.

Для проверки данного изобретения был выполнен эксперимент.

В качестве образцов были выбраны 3 консольно-закрепленных бруса в форме прямоугольного параллелепипеда длиной 1,2 м, шириной 0,05 м с различной толщиной: образец 1 толщиной 0,01 м; образец 2 - 0,009 м; и образец 3 переменной толщины от 0,01 м до 0,0095 м.

Были созданы три конечно-элементные модели для каждого из рассматриваемых образцов.

Был проведен модальный анализ моделей и определены частоты собственных колебаний моделей. Частоты собственных колебаний по третьей форме модели 1 составили 99,5 Гц; модели 2 - 102, 1 Гц; модели 3 - 100,7 Гц.

Было принято, что образец 1 удовлетворяет условиям вибрационной прочности и не содержит областей, где необходима корректировка геометрии.

На всех конечно-элементных моделях были выбраны узлы наблюдения 1, 2, 3, 4, 5 и узел возбуждения 6, который располагался на оси симметрии верхней грани бруса на его правом конце, левый конец бруса был жестко закреплен. Узлы 1, 2, 3, 4 и 5, наблюдения располагались на этой же оси.

В узле возбуждения 6 прикладывали сосредоточенную силу Р=46,8Н. Направление возбуждения (направление действия сосредоточенной силы) во всех численных экспериментах совпадало с направлением наблюдения: 1) параллельно длинным ребрам; 2) параллельно средним ребрам; 3) параллельно коротким ребрам бруса.

Затем определяли статическую податливость путем модального и статического анализов.

Полученные значения приведены в следующей таблице.

Погрешности определения статической податливости образца

Модель 1 Модель 2 Модель 3
№ узла Статичес
кий анализ
Модальный анализ ηj, % Статический анализ Модальный анализ ηj, % Статический анализ Модальный анализ ηj, %
1 0,3127 0,3127 0 0,000248 0,000249 0,4 0,003088 0,0030916 0,11
2 1,119 1,119 0 0,002075 0,00208 0,24 0,011283 0.011291 0,07
3 2,2435 2,2435 0 0,00521 0,00522 0,19 0,020929 0,020929 0
4 3,5486 3,5486 0 0,00916 0,00917 0,11 0,03489 0,03489 0
5 4,9362 4,9362 0 0,01356 0,01359 0,22 0,050772 0,05079 0,035

Затем произвели сравнение значений статической податливости, полученных путем модального и статического анализов, и определили узлы наблюдения, где полученные значения статической податливости различны.

У образца 1 значения статической податливости, определенные по его конечно-элементной модели путем модального и статического анализов, одинаковы.

У модели 2 во всех узлах наблюдения значения статической податливости оказались различны, что говорит о том, что образец 2 не обеспечивает вибрационную прочность и требуется корректировка геометрии во всех областях, содержащих узлы наблюдения 1, 2, 3, 4, 5, т.е. увеличение толщины бруса до 0,01 м, чтобы частоты собственных колебаний модели соответствовали заданным.

У модели 3 значения статической податливости различны в областях, содержащих точки наблюдения 1, 2, 5, что говорит о том, что геометрия данного образца не обеспечивает требуемую вибрационную прочность и требуется ее корректировка в областях, содержащих точки наблюдения 1, 2, 5.

Сопоставляли конечно-элементную модель 3 с натурным образцом, определяли области, соответствующие точкам 1, 2, 5 модели, корректировали геометрию образца путем наплавки металла до толщины 0,01 м. Затем проверяли вибрационные характеристики образца. Они соответствовали заданным нормам.

Таким образом, предлагаемое решение позволяет определить на детали место, требующее корректировки геометрии, что позволит сократить брак при изготовлении и производить ремонт работавших деталей.

Способ обеспечения вибрационной прочности деталей сложной геометрической формы, при котором расчетно-экспериментальным путем определяют ее вибрационные характеристики и накладывают граничные условия с учетом силовых нагрузок и температур, воздействующих на деталь при ее работе, затем строят конечно-элементные модели с различным числом конечных элементов, выполняют их модальный анализ, при проведении которого определяют частоты собственных колебаний моделей и выбирают модель, где погрешность определения частоты колебания детали меньше величины ее максимального отклонения от среднего значения, определенного экспериментальным путем, отличающийся тем, что на выбранной конечно-элементной модели выбирают узлы наблюдения и узлы возбуждения, прикладывают в узлах возбуждения сосредоточенные силы, определяют перемещения узлов наблюдения под действием приложенных сил и определяют значения статической податливости в узлах наблюдения путем модального анализа, затем дополнительно определяют значения статической податливости путем статического анализа в этих же узлах наблюдения, что и при модальном анализе, производят сравнение значений статической податливости, полученных путем модального и статического анализов, определяют узлы наблюдения, где полученные значения статической податливости различны, сопоставляют конечно-элементную модель с деталью, определяют на детали области, соответствующие расположению этих узлов, и корректируют вибрационные характеристики детали путем изменения ее геометрии в областях, содержащих эти узлы наблюдения.
СПОСОБ ОБЕСПЕЧЕНИЯ ВИБРАЦИОННОЙ ПРОЧНОСТИ ДЕТАЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 101.
25.08.2017
№217.015.c63a

Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего способа рентгеноструктурного контроля и может использоваться для оценки технического состояния ремонтных деталей газотурбинного двигателя (ГТД) из титановых сплавов в лабораторных и заводских условиях. Сущность изобретения заключается в том, что выполняют...
Тип: Изобретение
Номер охранного документа: 0002618602
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.da1d

Способ круговой электрохимической обработки компрессорных лопаток газотурбинного двигателя

Изобретение относится к электрохимической обработке. В способе заготовку лопатки устанавливают в рабочую камеру станка и ведут обработку лопатки двумя электродами-инструментами с подачей напряжения на электроды и лопатку, прокачкой электролита через межэлектродный промежуток и заданием...
Тип: Изобретение
Номер охранного документа: 0002623938
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da5a

Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при...
Тип: Изобретение
Номер охранного документа: 0002623838
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da82

Способ получения направленной кристаллизацией крупноразмерных отливок из жаропрочных сплавов

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы. Форму заполняют снизу вверх до...
Тип: Изобретение
Номер охранного документа: 0002623941
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e31a

Литейный жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и...
Тип: Изобретение
Номер охранного документа: 0002626118
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e417

Выносная камера сгорания

Изобретение относится к области турбомашиностроения и может быть использовано в конструкциях камер сгорания газотурбинных установок наземного и морского применения. Выносная камера сгорания содержит силовой корпус в виде двух конических стенок, неразъемно соединенных между собой большими...
Тип: Изобретение
Номер охранного документа: 0002626180
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e5f2

Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку...
Тип: Изобретение
Номер охранного документа: 0002626783
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f9e3

Устройство для паховой герниопластики

Изобретение относится к области медицины и медицинской техники, а именно к хирургическим устройствам, и в частности к устройствам для паховой герниопластики, и предназначено для повышения удобства выполнения и надежности аллопластики при паховых грыжах. Устройство для паховой герниопластики...
Тип: Изобретение
Номер охранного документа: 0002639854
Дата охранного документа: 22.12.2017
20.02.2019
№219.016.bdbb

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к управлению и регулированию компрессора газотурбинного двигателя. Компрессор двухконтурного газотурбинного двигателя содержит корпус регулируемых направляемых аппаратов (НА), который вместе с силовым промежуточным корпусом образует единый жесткий модуль, привод...
Тип: Изобретение
Номер охранного документа: 0002235914
Дата охранного документа: 10.09.2004
Показаны записи 51-60 из 62.
26.08.2017
№217.015.da1d

Способ круговой электрохимической обработки компрессорных лопаток газотурбинного двигателя

Изобретение относится к электрохимической обработке. В способе заготовку лопатки устанавливают в рабочую камеру станка и ведут обработку лопатки двумя электродами-инструментами с подачей напряжения на электроды и лопатку, прокачкой электролита через межэлектродный промежуток и заданием...
Тип: Изобретение
Номер охранного документа: 0002623938
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da5a

Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при...
Тип: Изобретение
Номер охранного документа: 0002623838
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.da82

Способ получения направленной кристаллизацией крупноразмерных отливок из жаропрочных сплавов

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы. Форму заполняют снизу вверх до...
Тип: Изобретение
Номер охранного документа: 0002623941
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.dab8

Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии

Изобретение относится к области металлургии и может быть использовано в газотурбинном двигателестроении при производстве рабочих и сопловых охлаждаемых лопаток с монокристаллической структурой. Литейный никелевый сплав содержит, мас. %: хром 9-18, кобальт 7-20, вольфрам 1-8, молибден 0,2-4,0,...
Тип: Изобретение
Номер охранного документа: 0002623940
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e31a

Литейный жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и...
Тип: Изобретение
Номер охранного документа: 0002626118
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e417

Выносная камера сгорания

Изобретение относится к области турбомашиностроения и может быть использовано в конструкциях камер сгорания газотурбинных установок наземного и морского применения. Выносная камера сгорания содержит силовой корпус в виде двух конических стенок, неразъемно соединенных между собой большими...
Тип: Изобретение
Номер охранного документа: 0002626180
Дата охранного документа: 24.07.2017
26.08.2017
№217.015.e5f2

Комбинированная радиальная опора

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными нагрузками. Комбинированная радиальная опора содержит корпус (1) подшипника, в пазах которого установлены лепестки (2), охватывающие втулку...
Тип: Изобретение
Номер охранного документа: 0002626783
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f9e3

Устройство для паховой герниопластики

Изобретение относится к области медицины и медицинской техники, а именно к хирургическим устройствам, и в частности к устройствам для паховой герниопластики, и предназначено для повышения удобства выполнения и надежности аллопластики при паховых грыжах. Устройство для паховой герниопластики...
Тип: Изобретение
Номер охранного документа: 0002639854
Дата охранного документа: 22.12.2017
30.11.2018
№218.016.a251

Способ измерения сил, действующих на подшипник качения при статическом и динамическом нагружении с использованием тензодатчиков сопротивления

Изобретение относится к способам измерения осевых и радиальных сил, воздействующих на работающий подшипник качения, и может найти применение во всех узлах, имеющих подшипники качения. При реализации способа тензодатчики установлены на наружной посадочной поверхности неподвижного кольца...
Тип: Изобретение
Номер охранного документа: 0002673503
Дата охранного документа: 27.11.2018
11.03.2019
№219.016.da5e

Устройство для диагностики автоколебаний рабочего колеса турбомашины

Изобретение относится к авиадвигателестроению и энергомашиностроению и может быть использовано при прочностной доводке компрессоров газотурбинных двигателей, а также при диагностике автоколебаний в процессе их стендовых испытаний и эксплуатации. Технический результат - повышение эффективности и...
Тип: Изобретение
Номер охранного документа: 0002308693
Дата охранного документа: 20.10.2007
+ добавить свой РИД