×
20.02.2013
216.012.27e1

Результат интеллектуальной деятельности: СПОСОБ ТЕПЛОТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

Вид РИД

Изобретение

Аннотация: Использование: изобретение относится к строительной теплотехнике, в частности к измерениям теплотехнических характеристик помещений зданий и сооружений и вычислению сопротивления теплопередаче наружных ограждающих конструкций (стен, перекрытий, покрытий и т.п.). Сущность: в способе определения комплекса теплотехнических свойств помещений зданий и сооружений в натурных (эксплуатационных) условиях, включающем измерение температуры внутреннего и наружного воздуха, измеряют относительную влажность воздуха внутри помещения и температуру на внутренней поверхности ограждающих конструкций, определяют температуру точки росы и нормируемую температуру, сравнивают указанные температуры и выбирают тот параметр, который имеет наибольшее значение, используют выбранное значение в радиационном термометре в качестве нижнего предела сигнализации, используют радиационный термометр с предустановленным режимом сигнализации для обследования контролируемой зоны с целью выявления точек с минимальной температурой, измеряют в этих точках плотность теплового потока, проходящего через данные конструкции, и вычисляют приведенное сопротивление теплопередаче ограждающих конструкций. Технический результат: обеспечение возможности оценки теплотехнических характеристик помещений и теплозащитных свойств ограждающих конструкций в нестационарных условиях с применением минимального количества регистрирующих приборов при сохранении точности и повышении производительности контроля. 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к строительной теплотехнике, в частности к измерениям теплотехнических характеристик помещений зданий и сооружений и вычислению сопротивления теплопередаче наружных ограждающих конструкций (стен, перекрытий, покрытий и т.п.).

Известен метод определения теплотехнических характеристик только ограждающих конструкций, включающих измерение температуры и плотности теплового потока и определение теплофизических характеристик по соответствующим теоретическим зависимостям [1].

Недостатком этого метода является неудобство проведения измерений в связи с установкой датчика на наружной стороне ограждающей конструкции.

Также известен метод тепловизионного контроля качества теплоизоляции ограждающих конструкций, включающий натурные измерения температур и плотности тепловых потоков в реперной точке, определение сопротивления теплопередаче в реперной точке, тепловизионную съемку ограждающей конструкции с последующим определением сопротивления теплопередаче в произвольных точках [2].

Недостатком этого способа является использование сложного и дорогостоящего тепловизионного оборудования, необходимого для определения теплофизических характеристик строительных конструкций, которое требует дополнительных экономических затрат.

Техническим результатом предлагаемого изобретения является обеспечение возможности оценки теплозащитных свойств ограждающих конструкций в нестационарных условиях с применением минимального количества регистрирующих приборов, с сохранением точности и повышением производительности контроля, а также расширение функциональных возможностей.

Научная новизна состоит в комплексном обследовании зданий и сооружений и определении теплотехнических характеристик их ограждающих конструкций в данный момент эксплуатации с целью выбора в дальнейшем наиболее рациональной системы утепления и ее внедрения для достижения эффекта минимального расхода топливно-энергетических ресурсов.

Способ преимущественно применим при определении теплотехнических характеристик панельных домов, так как наличие стыков панелей предполагает значительное увеличение «краевых зон» [3] по сравнению со зданиями и сооружениями других конструктивных решений, и, соответственно, возникает необходимость более адекватного подхода к планированию и проведению замеров.

Способ включает вычисление сопротивления теплопередаче ограждающих конструкций зданий и сооружений посредством измерения относительной влажности воздуха внутри помещения, измерения температуры внутреннего и наружного воздуха, измерения температуры на внутренней поверхности ограждающих конструкций и измерения плотности теплового потока, проходящего через данные конструкции. Измеренные значения плотности теплового потока на выбранных участках заносятся в электронный блок памяти, затем по известным математическим зависимостям вычисляется сопротивление теплопередаче ограждающих конструкций здания.

Способ осуществляется следующим образом.

Теплотехническое обследование производится в зимний период при включенном отоплении здания. Для инструментального контроля используется испытательное оборудование, зарегистрированное в Государственном реестре средств измерений Российской Федерации: термогигрометр, радиационный термометр, измеритель плотности тепловых потоков.

При помощи термогигрометра производятся замеры влажности внутреннего воздуха φint и его температуры tint. Выносной зонд прибора помещается в центр помещения на высоту 1,0-1,5 м от уровня пола. Фиксация измеренных значений влажности и температуры воздуха производится после того, как их отклонения в течение определенного времени не превышают заданных величин.

В зависимости от различных сочетаний полученных значений определяется температура точки росы td либо с помощью самого прибора, обладающего данной функцией, либо по формуле

где а=17,27; b=237,7°C; ln - натуральный логарифм; tint - температура внутреннего воздуха [°C]; φint - относительная влажность [доли] (0<φint<1).

Формула обладает погрешностью ±0,4°C в диапазоне значений 0°C<t<60°C; 0,01<φint<1,0; 0°C<td<50°C.

Определяется нормируемая температура τn внутренней поверхности ограждающей конструкции по формуле

где Δtn - нормируемый температурный перепад [°C], принимаемый по таблице 5 СНиП 23-02-2003 [5].

Если нормируемая температура τn внутренней поверхности ограждающей конструкции выше температуры точки росы td, то ее значение является минимально допустимым и устанавливается в качестве нижнего предела для сигнализации радиационного термометра. В обратном случае минимально допустимой является температура точки росы td, которая устанавливается в качестве нижнего предела для сигнализации.

Радиационным термометром с предустановленным режимом сигнализации производятся зигзагообразные движения по области контролируемой зоны, пока не обследуется вся ее площадь. Если прибор издает соответствующий сигнал, то данная зона подвергается более тщательному сканированию с целью выявления точек с минимальной температурой для дальнейшего измерения в этих точках теплового потока. Недостатком этого способа по сравнению с тепловизионным обследованием является незначительное увеличение времени сканирования ограждающей конструкции.

Вышеизложенный способ можно представить в виде блок-схемы алгоритма теплотехнического обследования, приведенной на рисунке 1.

По этому принципу проводится обследование внутренних поверхностей наружных стен, пола, потолка, внутренних стен и перегородок, светопрозрачных и непрозрачных элементов окна, оконных откосов и всех углов сопряжений.

Полученные данные заносятся в форму, представленную таблицей 1.

Данная методика предполагает более тщательную и качественную подготовку перед проведением измерения плотности теплового потока, которая осуществляется за счет разделения обследуемой ограждающей конструкции на несколько изотермических зон.

Плотность теплового потока, проходящего через ограждающие конструкции, определяется по результатам нескольких измерений в оперативном режиме. В первом случае преобразователи теплового потока размещаются на термически однородных участках, характерных для всей обследуемой ограждающей конструкции, с целью определения усредненной плотности теплового потока и, соответственно, среднего значения сопротивления теплопередаче «по глади». Во втором случае (а при наличии всех трех зон - и в третьем) преобразователи теплового потока размещаются в местах теплопроводных включений с целью определения локальной плотности теплового потока и, соответственно, среднего значения сопротивления теплопередаче «в краевых зонах».

Приведенное сопротивление теплопередаче R0r ограждающей конструкции, имеющей неравномерность температур поверхностей, вычисляется по формуле

где А - площадь испытываемой ограждающей конструкции [м2]; Ai - площадь характерной изотермической зоны [м2]; R0.i - сопротивление теплопередаче характерной зоны [м2·°C/Вт].

Замер и обработка данных производится в соответствии с ГОСТ 26254-84 [4] с тем отличием, что в настоящем способе сопротивление теплопередаче вычисляется без промежуточных замеров температуры внутренней и наружной поверхности ограждающей конструкции.

где αint, αext - коэффициенты теплоотдачи соответственно внутренней и наружной поверхности ограждающих конструкций [Вт/(м2·°C)], принимаемые по таблице 7 СНиП 23-02-2003 [5] и таблице 8 СП 23-101-2004 [6]; δi - толщина i-того слоя конструкции [м]; λi - расчетный коэффициент теплопроводности i-ого слоя [Вт/(м·°С)], принимаемый по приложению Д СП 23-101-2004 [6]; tint и text - средняя температура соответственно внутреннего и наружного воздуха [°C]; τint и τext - средняя температура соответственно внутренней и наружной поверхности ограждающей конструкции [°C]; q - средняя плотность теплового потока, проходящего через ограждающую конструкцию [Вт/м2].

Предлагаемый способ неразрушающего контроля наружных ограждающих конструкций позволяет измерять комплекс необходимых теплотехнических характеристик (влажность и температуру воздуха, температуру поверхности и сопротивление теплопередаче) непосредственно в эксплуатируемом здании с внутренней стороны помещения. Неразрушающий контроль подразумевает измерение параметров объекта, не требующее нарушения целостности его конструкций, то есть такой контроль экономически выгоден.

Настоящая методика может использоваться при обследовании конструкций любой толщины и состава. В данной методике все измерения производятся в оперативном режиме, что уменьшает время их проведения при сохранении точности. Способ является менее трудоемким, не требует сложного тепловизионного оборудования и связанных с этим высоких экономических затрат (стоимость радиационного термометра при наличии необходимых функций, например, звуковой сигнализации по нижнему уровню температуры, находится в пределах 25000 рублей, а стоимость тепловизора около 300000 рублей и выше).

Источники информации

1. Патент РФ №2421711, 2009 г. - аналог.

2. Патент РФ №2285915, 2004 г. - прототип.

3. Корниенко С.В. Повышение энергоэффективности зданий за счет снижения теплопотерь через краевые зоны ограждающих конструкций // Сборник трудов научной конференции НИИСФ РААСН - II академические чтения «Актуальные вопросы строительной физики - энергосбережение и экологическая безопасность». - М., 2005. - С.348-352.

4. ГОСТ 26254-84. Здания и сооружения. Методы определения сопротивления теплопередаче ограждающих конструкций [Текст]. - М.: Госстрой СССР, 1984.

5. СНиП 23-02-2003. Тепловая защита зданий [Текст]. - М.: Госстрой России, 2003.

6. СП 23-101-2004. Проектирование тепловой защиты зданий [Текст]. - М.: ОАО «ЦНИИпромзданий» и ФГУП ЦНС, 2004.


СПОСОБ ТЕПЛОТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
13.01.2017
№217.015.7ca8

Конструкция самонесущей наружной стены

Изобретение относится к строительным конструкциям и может быть использовано при возведении жилых зданий с монолитным железобетонным каркасом и поэтажно опертыми ограждающими конструкциями в виде самонесущих стен. Конструкция самонесущей наружной стены содержит наружный облицовочный слой из...
Тип: Изобретение
Номер охранного документа: 0002600139
Дата охранного документа: 20.10.2016
Показаны записи 11-17 из 17.
27.01.2015
№216.013.205e

Способ получения биосилифицированных нанотрубок

Изобретение относится к технологии получения биосилифицированных наноматериалов. Предложен способ получения биосилифицированных нанотрубок. Способ включает культивирование цианобактерий в растворе силиката натрия, нейтрализованного соляной кислотой и смешанного с питательной средой Z-8,...
Тип: Изобретение
Номер охранного документа: 0002539734
Дата охранного документа: 27.01.2015
10.07.2015
№216.013.5de1

Самоблокирующийся дифференциал с магнитной жидкостью

Изобретение относится к транспортному машиностроению и может использоваться в автомобилях повышенной проходимости. Самоблокирующийся дифференциал с магнитной жидкостью содержит две чаши коробки дифференциала, две полуоси, две полуосевые шестерни, четыре сателлита. Полуосевые шестерни состоят из...
Тип: Изобретение
Номер охранного документа: 0002555574
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6509

Способ получения нанодисперсной добавки для бетона

Изобретение относится к области биотехнологии. Предложен способ получения нанодисперсной добавки для бетона. Цианобактерии вида Pseudanabaena sp. 0411 или Leptolyngbya laminosa 0412 культивируют на питательной среде при температуре 23-25°C. В качестве питательной среды используют среду Z-8 с...
Тип: Изобретение
Номер охранного документа: 0002557412
Дата охранного документа: 20.07.2015
20.09.2015
№216.013.7bb3

Способ изготовления комплексной нанодисперсной добавки для высокопрочного бетона

Изобретение относится к строительству и промышленности строительных материалов, в частности к способам изготовления комплексных нанодисперсных добавок. Способ изготовления комплексной нанодисперсной добавки для высокопрочного бетона заключается в получении путем ультразвукового диспергирования...
Тип: Изобретение
Номер охранного документа: 0002563264
Дата охранного документа: 20.09.2015
20.01.2016
№216.013.a163

Способ регенерационной очистки медно-тартратных щелочных гальванических электролитов

Изобретение относится к очистке отработанных щелочных электролитов меднения, регенерацией катионов меди (II) и комплексонов и может быть применено в гальванотехнике и в промышленной экологии. Способ регенерационной очистки отработанных медно-тартратных щелочных электролитов, содержащих катионы...
Тип: Изобретение
Номер охранного документа: 0002572957
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a2f3

Станок для обработки бревен

Изобретение относится к области деревообрабатывающей промышленности, в частности к станку для обработки бревен, и может быть использовано при производстве заготовок для строительства деревянных домов, бань и т.д. Станок содержит неподвижную станину, установленные на станине вертикальные стойки...
Тип: Изобретение
Номер охранного документа: 0002573357
Дата охранного документа: 20.01.2016
13.01.2017
№217.015.90d8

Способ регенерации отработанного щелочного гальванического электролита меднения

Изобретение относится к области гальванотехники и может быть использовано для регенерации отработанных растворов. Способ регенерации отработанного щелочного гальванического электролита меднения, содержащего комплексы катионов меди (II) с этилендиаминтетрауксусной кислотой (ЭДТК), включает...
Тип: Изобретение
Номер охранного документа: 0002603933
Дата охранного документа: 10.12.2016
+ добавить свой РИД