×
20.02.2013
216.012.2777

Результат интеллектуальной деятельности: НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА

Вид РИД

Изобретение

№ охранного документа
0002475623
Дата охранного документа
20.02.2013
Аннотация: Предложенное изобретение может найти применение при цементировании скважин. Технический результат - улучшение эксплуатационных характеристик цемента по проницаемости. Способ закупоривания пористости цементной матрицы в скважине включает закачивание в скважину цементного раствора, содержащего воск, характеризующийся температурой стеклования, меньшей, чем 150°С, схватывание цемента в скважине, нагревание цемента до температуры, большей, чем температура стеклования воска, и охлаждение цемента для того, чтобы воск затвердел. Для нагревания цемента может быть использована операция нагнетания водяного пара в скважину. Используемый воск представляет собой эмульсию полиэтиленового воска, эмульсию полипропиленового воска, эмульсию карнаубского воска или эмульсию чешуйчатого воска. 3 з.п. ф-лы, 3 ил., 2 табл.

Область техники

Данное изобретение относится к добавке к цементу, предназначенной для использования при цементировании нефтяных скважин и тому подобного, в частности, изобретение относится к полимеру, характеризующемуся низким значением температуры стеклования Tg, в качестве закупоривающего агента для композиции цемента.

Уровень техники

При проведении обычной операции цементирования скважины на поверхности земли получают цементный раствор, который закачивают в скважину для заполнения кольцевого пространства между обсадной колонной и стенкой ствола буровой скважины, что обеспечивает создание разобщения пластов и механической опоры. Возрастает интерес к добыче тяжелой нефти вследствие существования огромных запасов тяжелой нефти, в то время как запасы легкой нефти уменьшаются. Одним из основных средств добычи тяжелых нефтей являются тепловые способы разработки скважин. Тепловые способы работают в результате увеличения температуры нефти, что будет уменьшать вязкость нефти. Одним из основных использующихся тепловых способов является нагнетание водяного пара. Однако одна из проблем при разобщении пластов заключается в проницаемости цемента после проведения операций нагнетания водяного пара. При первоначальном схватывании цемент может обеспечить получение хорошей герметизации, однако, изменения давления и температуры во время неоднократного повторения методик нагнетания водяного пара могут привести к возникновению напряжений и оказать воздействие на целостность цемента.

Системы, использующиеся в такой области, обычно представляют собой широко использующийся цемент с малой плотностью, который становится высокопроницаемым после проведения нескольких циклов нагнетания водяного пара. Обычно в цементной оболочке достигаются температуры, равные приблизительно 300ºС, и в общем случае схватившийся цемент после регулярного проведения нагнетания водяного пара будет утрачивать прочность и приобретать проницаемость. Это может привести к утрате разобщения пластов и вызвать образование полостей в обсадной колонне и/или утечку водяного пара. Как таковая продолжительность срока службы скважин, разрабатываемых тепловыми способами, под действием всех данных напряжений, которые испытывает цемент, укорачивается.

Зачастую вследствие слабосцементированных и неконсолидированных пластов в таких скважинах возникают проблемы с поглощением бурового раствора пластом, и поэтому требуются системы цемента с малой плотностью, однако, это невыгодно с точки зрения свойств схватившегося цемента. Поскольку водопроницаемость схватившегося цемента обратно пропорциональна плотности обычно использующегося цемента. Скважины по добыче тяжелой нефти, разрабатываемые тепловыми способами, в основном относятся к рынкам нижнего яруса, где ключевым моментом обеспечения конкурентоспособности является низкая стоимость цементного раствора.

Одна разработанная система цемента FlexSTONE (Schlumberger) в сопоставлении с обычными цементами сохраняет высокие значения пределов прочности при сжатии и растяжении и используется при проведении операций нагнетания водяного пара в пласт. Однако проницаемость цемента все еще является проблемой при 300ºС.

Поэтому цель изобретения заключается в предложении рентабельной добавки для улучшения долговременных эксплуатационных характеристик схватившегося цемента по проницаемости.

Описание изобретения

Первый аспект изобретения включает композицию цементного раствора, содержащую полимерный закупоривающий агент, характеризующийся низким значением Tg.

Полимер может характеризоваться значением Tg, меньшим чем 150ºС. Наличие низкого значения Tg обозначает то, что полимер будет плавиться при температурах, достигаемых во время проведения операций теплового воздействия в скважине, и перетекать в поры цементной матрицы.

Предпочтительно полимером в композиции цементного раствора является воск. В предпочтительной композиции полимер представляет собой эмульсию полиэтиленового воска, эмульсию полипропиленового воска, эмульсию карнаубского воска или эмульсию чешуйчатого воска. Воски представляют собой рентабельную добавку, которая может быть использована.

Композиция цементного раствора может представлять собой цемент с малой плотностью.

Второй аспект изобретения включает способ закупоривания пористости цементной матрицы в скважине, включающий закачивание в скважину цементного раствора, соответствующего любой из предшествующих позиций; схватывание цемента в скважине; нагревание цемента до температуры, большей, чем значение Tg добавки; и охлаждение цемента для того, чтобы добавка затвердела.

Предпочтительно способ включает проведение операции нагнетания водяного пара для нагревания цемента.

Способ уменьшения проницаемости композиции цемента в скважине, включающий добавление к цементному раствору полимера, характеризующегося низким значением Tg; и закачивание цементного раствора в скважину.

Краткое описание чертежей

фиг.1 демонстрирует диапазон размеров для твердых частиц и пор в гидратированном цементном тесте;

фиг.2 демонстрирует полученный по методу СЭМ снимок капиллярных пор в цементном камне; и

Фиг.3 демонстрирует график зависимости диаметра пор (нм) от объема пенетрации (см3/г).

Вариант (варианты) реализации изобретения

При гидратировании цемента образуются сообщающиеся друг с другом поры различных размеров, как это продемонстрировано на фиг.1. Поры в цементной матрице образуются зазорами между частицами слоев C-S-H 1, капиллярными полостями 2, гексагональными кристаллами Са(ОН)2 или низкосульфатной формы в цементном тесте 3, агрегатами частиц C-S-H 4, захваченными воздушными пузырьками 5, захваченными воздушными полостями 6. Поры могут быть разделены на макропоры, капиллярные поры и гелевые поры. Межслоевые зазоры между C-S-H (гелевые поры) обычно имеют объем, равный приблизительно 28% от объема геля, и размеры в диапазоне от нескольких долей нм до нескольких нм. Данные типы пор не оказывают влияния на долговечность материала, поскольку они слишком малы для обеспечения значительной степени транспортирования агрессивных веществ. Капиллярные поры представляют собой полости, не заполненные твердыми продуктами гидратации цементного камня. Фиг.2 демонстрирует цемент, состоящий из микрокапилляров между кристаллами пластинчатой формы, также виден и макрокапилляр. Капиллярные поры обычно имеют размеры в диапазоне от 10 нм до 1 микрона в зависимости от времени отверждения и от соотношения между количествами воды и цемента. Фиг.3 демонстрирует зависимость диаметра пор от объема пенетрации. Капиллярные поры определяют долговечность материала. Для предотвращения межпластового перетока водопроницаемость не должна превышать 0,1 мД. Поэтому изобретение предусматривает цементные растворы, содержащие твердые частицы, которые будут заполнять макропоры и при плавлении могут перетекать через меньшие поры, уменьшая сообщение пор друг с другом и поэтому проницаемость цемента.

В цементный раствор вводят твердые частицы добавки. Частицы имеют размер, который делает возможным вхождение частиц в макропоры при гидратации цемента, после этого при увеличении температуры до величины, превышающей температуру плавления данных частиц (во время нагнетания водяного пара), расплавленная текучая среда будет протекать через меньшие поры, уменьшая сообщение пор друг с другом.

В случае температуры пласта, большей, чем значение Tg полимера, так как во время проведения операции нагнетания водяного пара полимер будет плавиться. Сразу по завершении нагнетания водяного пара температура будет уменьшаться, и органическая добавка будет затвердевать. Сразу после плавления полимера он будет способен перетекать через цементную матрицу благодаря увеличению подвижности полимера и закупоривать микропористость цемента. Пластовые флюиды сначала будут блокироваться жидким состоянием полимера во время проведения операции нагнетания водяного пара, а после этого повторно затвердевшим полимером сразу после прекращения реализации теплового способа разработки скважины и охлаждения цементной матрицы. Водопроницаемость схватившегося цемента будет уменьшаться вследствие формирования пробок в сообщающейся пористости. Для обеспечения эффективности и сохранения низкой проницаемости цемента требуется закупорить только некоторые различные области в сообщающейся пористости.

Добавкой могут являться продукты, такие как D600 (стирол-бутадиеновый латекс), D700, D181 (полипропилен) или воска. Предпочтительными продуктами являются эмульсии восков на водной основе, поскольку они характеризуются высоким уровнем содержания твердого вещества для маловязкой текучей среды, такой как в случае латекса, но в противоположность латексу не будут образовывать пленку во время гидратации цемента. Воски также являются рентабельными с точки зрения затрат. Предпочтительные продукты включают:

Материал Торговое наименование Размер частиц Температура плавления
Эмульсия полиэтиленового воска Michem® Emulsion 39235 0,35 мкм 139ºС
Эмульсия полипропиленового воска Michem® Emulsion 43040 0,45 мкм 157ºС
Эмульсия карнаубского воска Michem® Emulsion 67135 0,150 мкм 82ºС
Эмульсия чешуйчатого воска Michem® Emulsion 70750.Е 0,500 мкм 50ºС

Примеры

Используют систему для определения водопроницаемости, работающую при приблизительно 60-70ºС. Выбирают кандидаты полимерных добавок, характеризующиеся значением Tg, равным приблизительно 40-50ºС. Получают три системы тяжелая нефть-цемент:

1. Эталонная система:

13,3 фунта на баррель (2,85 кг/м3) вместе с классом А

40% BWOC D066 (кварцевая мука)

D047 (пеногаситель - полипропиленгликоль)

0,2% BWOC D065 (диспергатор TIC)

2% BWOC D020 (наполнитель - бентонит)

Данную рецептуру обозначают как «тепловой способ при 40% в Канаде».

2. Тепловой способ при 40% вместе с 2 галлон/мешок (7,57 дм3/мешок) эмульсии чешуйчатого воска (Michem® Emulsion 7050, 0,5-микронное синтетическое стекловолокно = 52%, температура плавления 50ºС):

1% D020 (наполнитель - бентонит)

0,7% D065 (диспергатор TIC)

0,05 галлона (3,79 дм3) на мешок D175 (противовспенивающая добавка).

3. 12,75 фунта на галлон (0,1198 кг/дм3) суспензии вместе с эмульсией нефти и воды - синтетическим стекловолокном представляют собой 30% цемента класса А вместе с 40% BWOC D066 (кварцевая мука)

28% (об.) суспензии нефти

42% (об.) суспензии воды

2,5% (масс.) D701 (добавка, регулирующая газовыделение) при расчете на массу нефти

несколькими граммами D065 (диспергатор TIC).

Получение образца

Образец перемешивают, и он претерпевает первое отверждение в течение 1 недели при 40ºС. Из каждой системы извлекают несколько кернов длиной в 2 дюйма (50,8 мм)/диаметром в 1 дюйм (25,4 мм). После этого образцы подвергают отверждению при 275ºС (525ºF) в течение 6 часов. Максимальные температуры выдерживают в течение 45 часов, а после этого проводят осторожное охлаждение.

Время отверждения при 275ºС повторяют в течение 1 недели, а после этого образцы осторожно охлаждают. Это обеспечивает достаточное ухудшение характеристик для эталонной системы (проницаемость >0/1 мД).

Измерения водопроницаемости для трех образцов проводят при комнатной температуре и при более чем 60ºС (>температуры плавления для эмульсии воска) и при 140ºС для эталонной и восковой систем.

Результаты

Обозначение образца Удельная проницаемость, мД Описание керна
Три образца цементных пробок с диаметром в 1'' (25,4 мм), измерения при комнатной температуре
Эталон 0,184 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Воск 0,205 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Эмульсия нефти 0,715 Серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Два образца цементных пробок с диаметром в 1'' (25,4 мм), измерения при 140ºС
Эталон 0,236 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Воск 0,092 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка

Испытания на раздавливание после отверждения - 1 цилиндр/система

1. Эталон = 3200 фунт/дюйм2 (22100 кПа)

2. Воск = 1900 фунт/дюйм2 (13100 кПа)

3. Эмульсия нефти = 1800 фунт/дюйм2 (12400 кПа)

После раздавливания в матрице системы 2 наблюдали пурпурную/голубую окраску.

Хотя в испытании на реологию/текучесть капли нефти в случае «эмульсии нефти» и выступают в роли мелких частиц, они не блокируют водопроницаемость. Между восковой и эталонной системами ожидается соотношение 5, которое подтверждает возможность использования воска в качестве добавки для закупоривания пустот в цементе.

Водопроницаемости подобны при комнатной температуре (0,18 и 0,20 мД). Это ожидается, и данное значение согласуется с наполненной системой.

При 140ºС водопроницаемости между эталонной и восковой системами больше уже не подобны. Восковая система характеризуется меньшей водопроницаемостью в сопоставлении с эталонной системой - 0,09 против 0,236 мД. Водопроницаемость восковой системы при 140ºС является меньшей, чем при комнатной температуре, - 0,09 против 0,205 мД.

Как можно видеть из сравнительных измерений водопроницаемости, расплавленный полимер обладает способностью уменьшать сообщающуюся пористость цементной матрицы. На подвижность расплавленного полимера влияние также будут оказывать и концентрация, молекулярная масса и размер частиц.


НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
Источник поступления информации: Роспатент

Показаны записи 261-270 из 324.
01.03.2019
№219.016.d0c4

Способ обработки скважины на нефтепромысле смесью текучей среды и волокна (варианты)

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к способам обработки скважин. Способ включает обеспечение текучей среды на нефтепромысле, добавление волокна в текучую среду для образования смеси, обеспечение ненарезанного волокна в форме множества соединенных бобин,...
Тип: Изобретение
Номер охранного документа: 0002461706
Дата охранного документа: 20.09.2012
08.03.2019
№219.016.d58e

Способ бинаризации для анализа акустических данных

Изобретение относится к способам улучшения акустических данных от насоса для мониторирования состояния насоса при работе. Улучшение может быть в виде значительного уменьшения количества данных, подлежащих обработке программно-аппаратными средствами, при намного более высоком уровне...
Тип: Изобретение
Номер охранного документа: 0002449172
Дата охранного документа: 27.04.2012
11.03.2019
№219.016.d91a

Узел надувного пакера и способ развертывания пары пакеров в скважине

Группа изобретений относится к пакерам, используемым при отборе проб пластовой текучей среды, и включает способ отбора проб и устройство для его осуществления. Технический результат заключается в повышении надежности и увеличении срока службы надувных пакеров, упрощении процесса их запакеровки...
Тип: Изобретение
Номер охранного документа: 0002384692
Дата охранного документа: 20.03.2010
11.03.2019
№219.016.d952

Способ и устройство для обнаружения наличия и глубины воды, добываемой из пласта, во время бурения при пониженном гидростатическом давлении в стволе скважины

Группа изобретений относится к способам и устройствам для определения скважинного параметра в буровой среде при пониженном гидростатическом давлении в стволе скважины. Способы определения скважинного параметра в буровой среде заключаются в том, что осуществляют бурение ствола скважины при...
Тип: Изобретение
Номер охранного документа: 0002359118
Дата охранного документа: 20.06.2009
11.03.2019
№219.016.dc1b

Сейсмическая взрывная система

Настоящее изобретение относится к взрывной системе для сейсмических зарядов, которые защищены от опасности детонации посредством радиочастотного сигнала (RF) и электростатического разряда (ESD). Заявлен сейсмический взрывной модуль, система для использования при сейсмической разведке, а также...
Тип: Изобретение
Номер охранного документа: 0002457510
Дата охранного документа: 27.07.2012
15.03.2019
№219.016.e06c

Предохранительное устройство системы перфорирования ствола скважины, система для перфорирования и способ управления системой для перфорирования

Изобретение относится к нефтедобывающей промышленности, в частности к предохранительным устройствам системы для перфорирования ствола скважины. Технический результат - обеспечение безопасности при перфорировании скважин. Предохранительное устройство для обеспечения прерывания баллистической...
Тип: Изобретение
Номер охранного документа: 0002349738
Дата охранного документа: 20.03.2009
15.03.2019
№219.016.e0fe

Способы и системы для обработки акустических волновых сигналов

Изобретение относится к области геофизики и может быть использовано при исследовании подземных формаций. Заявлены способы и системы для получения акустических измерений, относящихся к подземным формациям. Способы и системы обеспечивают извлечение части акустических измерений на основании...
Тип: Изобретение
Номер охранного документа: 0002452980
Дата охранного документа: 10.06.2012
20.03.2019
№219.016.e54c

Способы и устройства анализа флюидов в скважине

Изобретение относится к анализу находящихся в скважине флюидов геологического пласта для оценки и проверки пласта в целях разведки и разработки буровых скважин добычи углеводородов. Техническим результатом является создание способа и устройства для анализа пластовых флюидов в скважине...
Тип: Изобретение
Номер охранного документа: 0002392430
Дата охранного документа: 20.06.2010
20.03.2019
№219.016.e5de

Устройство и способ управления энергией взрыва в стволе скважины

Изобретение относится к перфораторам, используемым в скважинах, и способам управления энергией взрыва заряда взрывчатого вещества в скважинном перфораторе в стволе скважины. Устройство содержит заряд взрывчатого вещества и, по меньшей мере, один элемент, способный влиять на энергию взрыва,...
Тип: Изобретение
Номер охранного документа: 0002388903
Дата охранного документа: 10.05.2010
20.03.2019
№219.016.e603

Способы регулирования свойств потери текучей среды из текучих сред на основе вязкоупругих поверхностно-активных веществ

Изобретение относится к композициям и способам снижения потери текучей среды из текучих сред вязкоупругих поверхностно-активных веществ ПАВ во время обработок, таких как операции гидравлического разрыва пласта или чистки скважины. Технический результат - регуляция потери текучей среды добавками...
Тип: Изобретение
Номер охранного документа: 0002359112
Дата охранного документа: 20.06.2009
Показаны записи 231-236 из 236.
17.02.2018
№218.016.2af3

Конфигурация плавающего промежуточного электрода для устройств скважинного генератора ядерных излучений

Изобретение относится к области генерирования радиации в скважинах для ядерного каротажа. Генератор ядерного излучения для функционирования в скважинах содержит источник заряженных частиц, материал мишени и ускорительную колонну между источником заряженных частиц и материалом мишени....
Тип: Изобретение
Номер охранного документа: 0002642835
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bc0

Содержание асфальтенов в тяжелой нефти

Группа изобретений относится к способам определения содержания асфальтенов в подземном пласте. Способ включает: перемещение скважинного инструмента в стволе скважины, проходящей в подземном пласте, причем подземный пласт содержит флюид различной вязкости; извлечение флюида в скважинный...
Тип: Изобретение
Номер охранного документа: 0002643391
Дата охранного документа: 01.02.2018
17.02.2018
№218.016.2c7e

Способ и устройство для определения характеристик пластовых флюидов

Изобретение относится к способу определения типа пробы пластового флюида. Техническим результатом является повышение точности определения характеристик пластовых флюидов. Способ включает измерение поглощательной способности пробы пластового флюида на множестве длин волны электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002643531
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2fd4

Система и способ доставки нефтепромысловых материалов

Изобретение относится к мобильной опорной конструкции для по меньшей мере одного модульного бункера для нефтепромысловых материалов. Нефтепромысловый материал хранится по меньшей мере в одном бункере, что дает возможность использовать силу тяжести для подачи нефтепромыслового материала в...
Тип: Изобретение
Номер охранного документа: 0002644738
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3204

Аппаратура контроллера, система и/или способ для регулирования давления в системе управления текучей средой

Система управления текучей средой содержит корпус с входным каналом, находящимся в гидравлическом сообщении с выходным каналом. Положение дроссельного поршня в корпусе управляет потоком текучей среды от входного канала к выходному каналу. Контроллер, присоединенный к корпусу, имеет...
Тип: Изобретение
Номер охранного документа: 0002645310
Дата охранного документа: 20.02.2018
04.04.2018
№218.016.322d

Битумные эмульсии для применения в нефтедобывающей промышленности

Изобретение относится к интенсификации притока в скважину для увеличения нефтегазодобычи. В способе борьбы с фильтрационными потерями в формации, содержащем закачивание водной жидкости, содержащей эмульсию, стабилизированную поверхностно-активным веществом и имеющую внутреннюю битумную фазу, в...
Тип: Изобретение
Номер охранного документа: 0002645320
Дата охранного документа: 20.02.2018
+ добавить свой РИД