×
20.02.2013
216.012.2777

Результат интеллектуальной деятельности: НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА

Вид РИД

Изобретение

№ охранного документа
0002475623
Дата охранного документа
20.02.2013
Аннотация: Предложенное изобретение может найти применение при цементировании скважин. Технический результат - улучшение эксплуатационных характеристик цемента по проницаемости. Способ закупоривания пористости цементной матрицы в скважине включает закачивание в скважину цементного раствора, содержащего воск, характеризующийся температурой стеклования, меньшей, чем 150°С, схватывание цемента в скважине, нагревание цемента до температуры, большей, чем температура стеклования воска, и охлаждение цемента для того, чтобы воск затвердел. Для нагревания цемента может быть использована операция нагнетания водяного пара в скважину. Используемый воск представляет собой эмульсию полиэтиленового воска, эмульсию полипропиленового воска, эмульсию карнаубского воска или эмульсию чешуйчатого воска. 3 з.п. ф-лы, 3 ил., 2 табл.

Область техники

Данное изобретение относится к добавке к цементу, предназначенной для использования при цементировании нефтяных скважин и тому подобного, в частности, изобретение относится к полимеру, характеризующемуся низким значением температуры стеклования Tg, в качестве закупоривающего агента для композиции цемента.

Уровень техники

При проведении обычной операции цементирования скважины на поверхности земли получают цементный раствор, который закачивают в скважину для заполнения кольцевого пространства между обсадной колонной и стенкой ствола буровой скважины, что обеспечивает создание разобщения пластов и механической опоры. Возрастает интерес к добыче тяжелой нефти вследствие существования огромных запасов тяжелой нефти, в то время как запасы легкой нефти уменьшаются. Одним из основных средств добычи тяжелых нефтей являются тепловые способы разработки скважин. Тепловые способы работают в результате увеличения температуры нефти, что будет уменьшать вязкость нефти. Одним из основных использующихся тепловых способов является нагнетание водяного пара. Однако одна из проблем при разобщении пластов заключается в проницаемости цемента после проведения операций нагнетания водяного пара. При первоначальном схватывании цемент может обеспечить получение хорошей герметизации, однако, изменения давления и температуры во время неоднократного повторения методик нагнетания водяного пара могут привести к возникновению напряжений и оказать воздействие на целостность цемента.

Системы, использующиеся в такой области, обычно представляют собой широко использующийся цемент с малой плотностью, который становится высокопроницаемым после проведения нескольких циклов нагнетания водяного пара. Обычно в цементной оболочке достигаются температуры, равные приблизительно 300ºС, и в общем случае схватившийся цемент после регулярного проведения нагнетания водяного пара будет утрачивать прочность и приобретать проницаемость. Это может привести к утрате разобщения пластов и вызвать образование полостей в обсадной колонне и/или утечку водяного пара. Как таковая продолжительность срока службы скважин, разрабатываемых тепловыми способами, под действием всех данных напряжений, которые испытывает цемент, укорачивается.

Зачастую вследствие слабосцементированных и неконсолидированных пластов в таких скважинах возникают проблемы с поглощением бурового раствора пластом, и поэтому требуются системы цемента с малой плотностью, однако, это невыгодно с точки зрения свойств схватившегося цемента. Поскольку водопроницаемость схватившегося цемента обратно пропорциональна плотности обычно использующегося цемента. Скважины по добыче тяжелой нефти, разрабатываемые тепловыми способами, в основном относятся к рынкам нижнего яруса, где ключевым моментом обеспечения конкурентоспособности является низкая стоимость цементного раствора.

Одна разработанная система цемента FlexSTONE (Schlumberger) в сопоставлении с обычными цементами сохраняет высокие значения пределов прочности при сжатии и растяжении и используется при проведении операций нагнетания водяного пара в пласт. Однако проницаемость цемента все еще является проблемой при 300ºС.

Поэтому цель изобретения заключается в предложении рентабельной добавки для улучшения долговременных эксплуатационных характеристик схватившегося цемента по проницаемости.

Описание изобретения

Первый аспект изобретения включает композицию цементного раствора, содержащую полимерный закупоривающий агент, характеризующийся низким значением Tg.

Полимер может характеризоваться значением Tg, меньшим чем 150ºС. Наличие низкого значения Tg обозначает то, что полимер будет плавиться при температурах, достигаемых во время проведения операций теплового воздействия в скважине, и перетекать в поры цементной матрицы.

Предпочтительно полимером в композиции цементного раствора является воск. В предпочтительной композиции полимер представляет собой эмульсию полиэтиленового воска, эмульсию полипропиленового воска, эмульсию карнаубского воска или эмульсию чешуйчатого воска. Воски представляют собой рентабельную добавку, которая может быть использована.

Композиция цементного раствора может представлять собой цемент с малой плотностью.

Второй аспект изобретения включает способ закупоривания пористости цементной матрицы в скважине, включающий закачивание в скважину цементного раствора, соответствующего любой из предшествующих позиций; схватывание цемента в скважине; нагревание цемента до температуры, большей, чем значение Tg добавки; и охлаждение цемента для того, чтобы добавка затвердела.

Предпочтительно способ включает проведение операции нагнетания водяного пара для нагревания цемента.

Способ уменьшения проницаемости композиции цемента в скважине, включающий добавление к цементному раствору полимера, характеризующегося низким значением Tg; и закачивание цементного раствора в скважину.

Краткое описание чертежей

фиг.1 демонстрирует диапазон размеров для твердых частиц и пор в гидратированном цементном тесте;

фиг.2 демонстрирует полученный по методу СЭМ снимок капиллярных пор в цементном камне; и

Фиг.3 демонстрирует график зависимости диаметра пор (нм) от объема пенетрации (см3/г).

Вариант (варианты) реализации изобретения

При гидратировании цемента образуются сообщающиеся друг с другом поры различных размеров, как это продемонстрировано на фиг.1. Поры в цементной матрице образуются зазорами между частицами слоев C-S-H 1, капиллярными полостями 2, гексагональными кристаллами Са(ОН)2 или низкосульфатной формы в цементном тесте 3, агрегатами частиц C-S-H 4, захваченными воздушными пузырьками 5, захваченными воздушными полостями 6. Поры могут быть разделены на макропоры, капиллярные поры и гелевые поры. Межслоевые зазоры между C-S-H (гелевые поры) обычно имеют объем, равный приблизительно 28% от объема геля, и размеры в диапазоне от нескольких долей нм до нескольких нм. Данные типы пор не оказывают влияния на долговечность материала, поскольку они слишком малы для обеспечения значительной степени транспортирования агрессивных веществ. Капиллярные поры представляют собой полости, не заполненные твердыми продуктами гидратации цементного камня. Фиг.2 демонстрирует цемент, состоящий из микрокапилляров между кристаллами пластинчатой формы, также виден и макрокапилляр. Капиллярные поры обычно имеют размеры в диапазоне от 10 нм до 1 микрона в зависимости от времени отверждения и от соотношения между количествами воды и цемента. Фиг.3 демонстрирует зависимость диаметра пор от объема пенетрации. Капиллярные поры определяют долговечность материала. Для предотвращения межпластового перетока водопроницаемость не должна превышать 0,1 мД. Поэтому изобретение предусматривает цементные растворы, содержащие твердые частицы, которые будут заполнять макропоры и при плавлении могут перетекать через меньшие поры, уменьшая сообщение пор друг с другом и поэтому проницаемость цемента.

В цементный раствор вводят твердые частицы добавки. Частицы имеют размер, который делает возможным вхождение частиц в макропоры при гидратации цемента, после этого при увеличении температуры до величины, превышающей температуру плавления данных частиц (во время нагнетания водяного пара), расплавленная текучая среда будет протекать через меньшие поры, уменьшая сообщение пор друг с другом.

В случае температуры пласта, большей, чем значение Tg полимера, так как во время проведения операции нагнетания водяного пара полимер будет плавиться. Сразу по завершении нагнетания водяного пара температура будет уменьшаться, и органическая добавка будет затвердевать. Сразу после плавления полимера он будет способен перетекать через цементную матрицу благодаря увеличению подвижности полимера и закупоривать микропористость цемента. Пластовые флюиды сначала будут блокироваться жидким состоянием полимера во время проведения операции нагнетания водяного пара, а после этого повторно затвердевшим полимером сразу после прекращения реализации теплового способа разработки скважины и охлаждения цементной матрицы. Водопроницаемость схватившегося цемента будет уменьшаться вследствие формирования пробок в сообщающейся пористости. Для обеспечения эффективности и сохранения низкой проницаемости цемента требуется закупорить только некоторые различные области в сообщающейся пористости.

Добавкой могут являться продукты, такие как D600 (стирол-бутадиеновый латекс), D700, D181 (полипропилен) или воска. Предпочтительными продуктами являются эмульсии восков на водной основе, поскольку они характеризуются высоким уровнем содержания твердого вещества для маловязкой текучей среды, такой как в случае латекса, но в противоположность латексу не будут образовывать пленку во время гидратации цемента. Воски также являются рентабельными с точки зрения затрат. Предпочтительные продукты включают:

Материал Торговое наименование Размер частиц Температура плавления
Эмульсия полиэтиленового воска Michem® Emulsion 39235 0,35 мкм 139ºС
Эмульсия полипропиленового воска Michem® Emulsion 43040 0,45 мкм 157ºС
Эмульсия карнаубского воска Michem® Emulsion 67135 0,150 мкм 82ºС
Эмульсия чешуйчатого воска Michem® Emulsion 70750.Е 0,500 мкм 50ºС

Примеры

Используют систему для определения водопроницаемости, работающую при приблизительно 60-70ºС. Выбирают кандидаты полимерных добавок, характеризующиеся значением Tg, равным приблизительно 40-50ºС. Получают три системы тяжелая нефть-цемент:

1. Эталонная система:

13,3 фунта на баррель (2,85 кг/м3) вместе с классом А

40% BWOC D066 (кварцевая мука)

D047 (пеногаситель - полипропиленгликоль)

0,2% BWOC D065 (диспергатор TIC)

2% BWOC D020 (наполнитель - бентонит)

Данную рецептуру обозначают как «тепловой способ при 40% в Канаде».

2. Тепловой способ при 40% вместе с 2 галлон/мешок (7,57 дм3/мешок) эмульсии чешуйчатого воска (Michem® Emulsion 7050, 0,5-микронное синтетическое стекловолокно = 52%, температура плавления 50ºС):

1% D020 (наполнитель - бентонит)

0,7% D065 (диспергатор TIC)

0,05 галлона (3,79 дм3) на мешок D175 (противовспенивающая добавка).

3. 12,75 фунта на галлон (0,1198 кг/дм3) суспензии вместе с эмульсией нефти и воды - синтетическим стекловолокном представляют собой 30% цемента класса А вместе с 40% BWOC D066 (кварцевая мука)

28% (об.) суспензии нефти

42% (об.) суспензии воды

2,5% (масс.) D701 (добавка, регулирующая газовыделение) при расчете на массу нефти

несколькими граммами D065 (диспергатор TIC).

Получение образца

Образец перемешивают, и он претерпевает первое отверждение в течение 1 недели при 40ºС. Из каждой системы извлекают несколько кернов длиной в 2 дюйма (50,8 мм)/диаметром в 1 дюйм (25,4 мм). После этого образцы подвергают отверждению при 275ºС (525ºF) в течение 6 часов. Максимальные температуры выдерживают в течение 45 часов, а после этого проводят осторожное охлаждение.

Время отверждения при 275ºС повторяют в течение 1 недели, а после этого образцы осторожно охлаждают. Это обеспечивает достаточное ухудшение характеристик для эталонной системы (проницаемость >0/1 мД).

Измерения водопроницаемости для трех образцов проводят при комнатной температуре и при более чем 60ºС (>температуры плавления для эмульсии воска) и при 140ºС для эталонной и восковой систем.

Результаты

Обозначение образца Удельная проницаемость, мД Описание керна
Три образца цементных пробок с диаметром в 1'' (25,4 мм), измерения при комнатной температуре
Эталон 0,184 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Воск 0,205 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Эмульсия нефти 0,715 Серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Два образца цементных пробок с диаметром в 1'' (25,4 мм), измерения при 140ºС
Эталон 0,236 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка
Воск 0,092 Средний серый цвет, мелкосредняя пятнистая текстура, хорошая пробка

Испытания на раздавливание после отверждения - 1 цилиндр/система

1. Эталон = 3200 фунт/дюйм2 (22100 кПа)

2. Воск = 1900 фунт/дюйм2 (13100 кПа)

3. Эмульсия нефти = 1800 фунт/дюйм2 (12400 кПа)

После раздавливания в матрице системы 2 наблюдали пурпурную/голубую окраску.

Хотя в испытании на реологию/текучесть капли нефти в случае «эмульсии нефти» и выступают в роли мелких частиц, они не блокируют водопроницаемость. Между восковой и эталонной системами ожидается соотношение 5, которое подтверждает возможность использования воска в качестве добавки для закупоривания пустот в цементе.

Водопроницаемости подобны при комнатной температуре (0,18 и 0,20 мД). Это ожидается, и данное значение согласуется с наполненной системой.

При 140ºС водопроницаемости между эталонной и восковой системами больше уже не подобны. Восковая система характеризуется меньшей водопроницаемостью в сопоставлении с эталонной системой - 0,09 против 0,236 мД. Водопроницаемость восковой системы при 140ºС является меньшей, чем при комнатной температуре, - 0,09 против 0,205 мД.

Как можно видеть из сравнительных измерений водопроницаемости, расплавленный полимер обладает способностью уменьшать сообщающуюся пористость цементной матрицы. На подвижность расплавленного полимера влияние также будут оказывать и концентрация, молекулярная масса и размер частиц.


НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
НИЗКОПРОНИЦАЕМЫЕ СИСТЕМЫ ЦЕМЕНТА ДЛЯ ОБЛАСТИ ПРИМЕНЕНИЯ НАГНЕТАНИЯ ВОДЯНОГО ПАРА
Источник поступления информации: Роспатент

Показаны записи 161-170 из 324.
20.02.2016
№216.014.ce7c

Гравийная набивка в боковом стволе скважины

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к образованию гравийных фильтров в боковом стволе скважины. Способ включает заканчивание узла сопряжения и соединение узла сопряжения с заканчиванием, развертывание внутрискважинного оборудования в заканчивании,...
Тип: Изобретение
Номер охранного документа: 0002575197
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cebb

Моделирование взаимодействия трещин гидравлического разрыва в системах сложных трещин

Предложен способ выполнения операции гидравлического разрыва на месте расположения скважины с системой трещин. Способ включает в себя получение данных о месте расположения скважины и механической модели геологической среды и образование картины роста трещин гидравлического разрыва в системе...
Тип: Изобретение
Номер охранного документа: 0002575947
Дата охранного документа: 27.02.2016
20.06.2016
№217.015.0447

Способ обработки скважины (варианты)

Группа изобретений относится к обработке подземной формации в скважине. Технический результат - увеличение добычи углеводородов с помощью обрабатывающей текучей среды для воздействия на подземную формацию. По способу обеспечивают гидравлическое сообщение между скважиной и первой целевой зоной,...
Тип: Изобретение
Номер охранного документа: 0002587197
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.34d0

Способ определения скорости вращения забойного бескомпрессорного двигателя

Изобретение относится к забойным бескомпрессорным двигателям для вращения буровых долот. Технический результат - обеспечение возможности контроля и/или управления работой забойного бескомпрессорного двигателя. Система бурения, предназначенная для бурения буровой скважины, включает забойный...
Тип: Изобретение
Номер охранного документа: 0002581616
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.351d

Биоциды с контролируемым высвобождением для применения в нефтяных месторождениях

Изобретение относится к применению биоцидов в нефтяных месторождениях. Способ обработки подземного образования, пронизанного стволом скважины, включающий введение жидкости для обработки скважины, состоящей из как минимум одного инкапсулированного биоцида, выбранного из приведенной группы, где...
Тип: Изобретение
Номер охранного документа: 0002581427
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e0

Электромагнитный способ получения азимутального угла падения

Изобретение относится к скважинному электромагнитному каротажу. Сущность: способ включает регистрацию данных электромагнитных измерений в подземной буровой скважине с по меньшей мере одной измерительной группы. Данные электромагнитных измерений обрабатывают, чтобы получить коэффициенты...
Тип: Изобретение
Номер охранного документа: 0002582477
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.383a

Вычисление скорости и глубины бурения для скважинных инструментов

Изобретение относится к управлению процессом бурения. Техническим результатом является определение скорости и глубины бурения для скважинных инструментов. Способ управления операцией бурения включает в себя образование с помощью первого датчика и второго датчика компоновки низа бурильной...
Тип: Изобретение
Номер охранного документа: 0002582608
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3aa1

Интерполимерный сшитый гель и способ использования

Изобретение относится к гелю для обработки скважин, способу получения геля для обработки скважин, способу получения восстановленного геля и способу обработки скважины. Гель для обработки скважин содержит более 1 мас.% полиакриламида, сшитого неметаллическим сшивающим агентом. Неметаллический...
Тип: Изобретение
Номер охранного документа: 0002583429
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cd8

Кабель маленького диаметра, плотно склеенный с электрическим отводом на внешних проводах

Изобретение относится, в основном, к буровому оборудованию, такому как нефтепромысловое наземное оборудование, нефтепромысловый буровой кабель и т.п. Изобретение описывает плотно склеенный кабель (10) маленького диаметра и способ для его производства, включающий по меньшей мере один продольный...
Тип: Изобретение
Номер охранного документа: 0002583155
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.45de

Система и способ управления давлением в кольцевом пространстве ствола скважины с применением газлифта в линии возврата бурового раствора

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к регулированию давления бурового раствора в кольцевом пространстве скважины. Система и способ включают в себя перекачку бурового раствора через бурильную колонну, спущенную в ствол скважины, проходящий под дном водоема,...
Тип: Изобретение
Номер охранного документа: 0002586129
Дата охранного документа: 10.06.2016
Показаны записи 161-170 из 236.
20.01.2016
№216.013.a102

Система погружной концевой кабельной муфты для использования в скважинном применении

Изобретение относится к средствам соединения в скважине электрического кабеля с погружным электродвигателем. Техническим результатом является повышение герметичности и прочности соединения. Предложена система формирования электрического соединения в подводной среде, содержащая: погружной...
Тип: Изобретение
Номер охранного документа: 0002572860
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a23f

Максимальная глубина исследования замеров в подземной формации

Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию. Для реализации заявленного изобретения используется каротажный прибор, который может устанавливаться на каротажном...
Тип: Изобретение
Номер охранного документа: 0002573177
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bc8f

Многомасштабное цифровое моделирование породы для моделирования пласта

Изобретение относится к способам получения характеристик трехмерных (3D) образцов породы пласта, в частности к укрупнению масштаба данных цифрового моделирования. Технический результат - более точное моделирование потока. Модели в масштабе скважины используют МТС (многоточечную статистику) для...
Тип: Изобретение
Номер охранного документа: 0002573739
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.c019

Система и способ для получения опережающих измерений в процессе операции бурения

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной...
Тип: Изобретение
Номер охранного документа: 0002576043
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c083

Способы построения 3-мерных цифровых моделей пористой среды с использованием комбинации данных высокого и низкого разрешения и многоточечной статистики

Изобретение относится к компьютерным системам визуализации пористых пород. Техническим результатом является повышение точности сегментации данных при построении модели образца пористой среды. Предложен способ построения модели образца пористой среды. Способ включает в себя этап приема данных...
Тип: Изобретение
Номер охранного документа: 0002576501
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c4a1

Определение характеристик составляющих пласта на месте проведения работ

Использование: для измерений качественных показателей пластов. Сущность изобретения заключается в том, что выполняют сбор множества моментальных снимков ядерного магнитного резонанса (ЯМР) из ствола скважины, показывающих изменения в геологическом пласте и определяющих данные ядерного...
Тип: Изобретение
Номер охранного документа: 0002574329
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4b3

Клапаны, компоновки низа бурильной колонны и способы избирательного приведения в действие двигателя

Группа изобретений относится к клапанам, используемым при бурении скважин, к компоновкам низа бурильной колонны и к способам избирательного приведения в действие забойного двигателя. Технический результат заключается в повышении надежности и точности управления работой забойного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574429
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c91a

Способ изготовления вставки статора для забойного двигателя

Изобретение относится к области бурения. Способ изготовления вставки статора для забойного двигателя, в котором обеспечивают шпиндель, имеющий наружную геометрию, комплементарную с необходимой внутренней геометрией статора; осуществляют наложение гибкого рукава поверх шпинделя; устанавливают...
Тип: Изобретение
Номер охранного документа: 0002578066
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.ca6f

Способ интерпретации измерений скважинного дебита во время скважинной обработки

Изобретение относится к обработке скважин и разработке месторождений и, в частности, системе и способу интерпретации дебита потока во время скважинной обработки. Технический результат заключается в эффективности стимуляционной обработки за счет получения знаний о распределении потока на...
Тип: Изобретение
Номер охранного документа: 0002577568
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce7c

Гравийная набивка в боковом стволе скважины

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к образованию гравийных фильтров в боковом стволе скважины. Способ включает заканчивание узла сопряжения и соединение узла сопряжения с заканчиванием, развертывание внутрискважинного оборудования в заканчивании,...
Тип: Изобретение
Номер охранного документа: 0002575197
Дата охранного документа: 20.02.2016
+ добавить свой РИД