×
20.02.2013
216.012.2635

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИБКИХ АДСОРБИРУЮЩИХ ИЗДЕЛИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения гибких адсорбирующих изделий. Способ включает смешение порошка пористого адсорбирующего материала (адсорбента), в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим и формование полученной композиции. В качестве связующего используют полимеры фторпроизводных этилена (фторопласты). Перед формованием в смесевую композицию добавляют растворитель, выбранный из ряда кетонов, который удаляют из формованного сырого изделия путем сушки. После сушки адсорбирующего изделия осуществляют активацию путем термической обработки в вакууме. Способ обеспечивает получение изделий с высокими значениями кинетических параметров процессов массопереноса сорбата и сорбционной емкости адсорбента на единицу массы в многочисленных циклах сорбция - десорбция. Адсорбирующие изделия имеют высокое значение модуля упругости при изгибе и могут эксплуатироваться при температуре до 395°С. 3 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к способам получения гибких адсорбирующих изделий.

Использование в адсорбционных процессах сорбирующих материалов требует предварительного формования кристаллов сорбента в агломераты различной формы - гранулы, блоки, листы и т.д.

Существующие методы получения сорбирующих материалов предполагают использование как неорганических, так и органических связующих и имеют своей целью решение конкретной практической задачи - получение сорбента с заданными характеристиками.

При этом получаемый сорбирующий материал должен удовлетворять следующим основным требованиям: высокая сорбционная емкость, развитая удельная поверхность и структура транспортных пор, высокая кинетика сорбции и десорбции, достаточная вибро- и ударопрочность, устойчивость к воздействию перепада температур и агрессивных сред.

Кроме того, для некоторых областей техники, например для холодильных установок, пищевой промышленности, медицины, электроники и др., в силу специфики использования необходимы гибкие адсорбирующие материалы. Такие изделия особенно необходимы, когда они являются неотъемлемой частью картриджей с осушителями, либо крепятся к элементам изделия, имеющим неплоскую поверхность (например, сорбирующий материал должен быть размещен внутри либо снаружи цилиндра).

Известен способ получения гибких адсорбирующих материалов, включающий смешение термопластичной полимерной матрицы и пористого адсорбирующего материала, нагревание полученной смеси выше температуры плавления полимерной матрицы и формовании полученной суспензии (патент РФ №2380153, МПК B01J 20/28, 2010 г.). Формование производится либо экструзией, либо вытягиванием, либо отливкой дутьем. В качестве пористого адсорбирующего материала используют активированный уголь, активированную глину, неорганические оксиды, алюмосиликаты (например, различные цеолиты), силикагели либо их комбинации. В качестве полимерной матрицы используют сложные эфиры простых полиэфиров, сополимер этилена и винилацетата, сополимер стирола и бутадиена или сополимер этилена и октена. При этом весовое соотношение адсорбирующий материал/полимерная матрица составляет (30-85)/(70-15). При реализации указанного способа используется предварительно активированный пористый адсорбирующий материал (например, цеолит, прокаленный при температуре выше 600°С до остаточного влагосодержания менее 2% весовых). Данное условие делает необходимым проведение всех технологических операций в атмосфере, осушенной до значения точки росы ниже минус 40°С. После проведения всех перечисленных выше технологических операций производится нарезка и изгибание полученного изделия в требуемую геометрическую форму. Полученное гибкое адсорбирующее изделие может иметь поперечное сечение в форме овала, квадрата, прямоугольника, колеса повозки, сот либо пленки, что определяется формой экструзионной головки.

Гибкое адсорбирующее изделие, полученное данным способом, имеет недостаточно высокую кинетику сорбции водяного пара и недостаточную сорбционную емкость на единицу массы. Кроме того, гибкое адсорбирующее изделие характеризуется невысоким модулем упругости при изгибе и недостаточной устойчивостью к термическому воздействию, что не позволяет осуществлять продолжительную эксплуатацию адсорбента при температуре выше 120°С.

При этом такой способ является технологически сложным. Это обусловлено необходимостью проведения всех технологических операций в условиях атмосферы с поддержанием постоянного состава газовой среды (концентрация паров воды должна соответствовать точке росы менее минус 40°С), что требует создания практически герметичной от окружающей среды технологической линии. Постоянное поддержание требуемого состава газовой среды предполагает использования достаточно сложного адсорбционного оборудования и больших затрат ресурсов (адсорберы водяного пара, линия для проведения стадии десорбции сорбентов и т.д., что хорошо известно специалистам, работающим в данной области техники). Отклонение от соблюдения данного технологического параметра в конечном счете негативно влияет на эксплуатационные характеристики получаемых гибких адсорбирующих изделий (снижение сорбционной емкости и кинетики процессов массопереноса сорбатов).

Задачей изобретения является улучшение эксплуатационных характеристик гибких адсорбирующих изделий.

Задача решается изобретением, по которому в способе получения гибких адсорбирующих изделий, включающем смешение порошка адсорбента, в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим, формование полученной композиции в сырое изделие требуемой геометрической конфигурации, в качестве полимерного связующего используют полимеры фторпроизводных этилена (фторопласты), а перед формованием в смесевую композицию из адсорбента и полимерного связующего добавляют растворитель, выбранный из ряда кетонов, который удаляют из формованного сырого изделия сушкой на воздухе либо в потоке газа, например воздуха. После сушки адсорбирующего изделия осуществляют его активацию путем термической обработки в вакууме.

Смешение порошка адсорбента и полимерного связующего осуществляют при соотношении адсорбент/полимерное связующее, равном 70-85/30-15% весовых, при этом количество растворителя выбирают исходя из требования получения для дальнейшего формования однородной суспензии заданной плотности и вязкости. Обычно количество растворителя составляет 10-20 мл на 1 грамм связующего.

В качестве растворителя могут быть использованы диметилкетон (2-пропанон, ацетон) и метилэтилкетон (2-бутанон), предпочтительно использовать ацетон.

Предпочтительно для приготовления суспензии используют исходный порошкообразный адсорбент с дисперсностью от 1 мкм до 5 мкм.

Предпочтительно сушку формованного изделия осуществляют при температуре выше 25°С, но ниже 45°С.

Предпочтительно активацию адсорбирующего изделия проводят в вакууме при остаточном давлении 5 мм рт.ст. и температуре 70-120°С до полного удаления растворителя.

Гибкое адсорбирующее изделие, полученное по изобретению, обладает перед прототипом рядом эксплуатационных преимуществ:

более высокая кинетика сорбции водяного пара;

более высокая сорбционная емкость водяного пара на единицу массы;

больший модуль упругости при изгибе;

более высокая устойчивость к термическому воздействию, что позволяет увеличить температуру продолжительной эксплуатации до 350°С.

Использование порошка исходного адсорбента с дисперсностью от 1 мкм до 5 мкм обеспечивает получение гибких адсорбирующий изделий с высокими значениями сорбционной емкости за счет доступности всего объема адсорбента для диффундирующего газа, т.к. при использовании в качестве связующего фторопласта не происходит блокировки транспортных и внутренних пор адсорбента (молекулы связующего на порядок превосходят размер транспортных пор). Этому же способствует то обстоятельство, что при удалении растворителя предлагаемым в способе технологическим приемом связующее после удаления растворителя представляет собой прочную газопроницаемую оболочку с множеством сквозных пор, размерами существенно превышающих размеры адсорбируемых молекул, что создает высокую проницаемость газовому потоку, обеспечивая тем самым высокую кинетику процессов массопереноса в циклах сорбции - десорбции.

Полученные по предложенному способу гибкие адсорбирующие изделия обладают при нормальных условиях модулем упругости от 30 до 75 МПа. Данное значение модуля упругости достигается за счет дисперсных параметров исходного порошка адсорбента, соотношения исходных компонентов, типа связующего, используемых технологических приемов и соблюдения их последовательности. Особенное значение имеет температура сушки формованного изделия, которая определяет скорость удаления растворителя, который при этом выступает в качестве порообразователя. При температурах выше 45°С удаление растворителя происходит столь интенсивно, что в фторопластовой матрице образуется множество сквозных пор большого диаметра. Это, в свою очередь, негативно влияет на физико-механические свойства получаемого гибкого сорбирующего материала: снижается модуль упругости, эластичность и т.д.

Кроме того, полученные по предложенному способу гибкие адсорбирующие изделия имеют температуру термической деструкции в температурном интервале от 350 до 370°С, что позволяет не только увеличить температуру продолжительной эксплуатации сорбента до 350°С, но и использовать полученные адсорбирующие изделия многократно, т.е. проводить их практически полную регенерацию, чего нельзя добиться для адсорбирующих изделий, полученных по патенту РФ №2380153 (достаточно полная десорбция воды из большинства сорбентов на основе цеолитов происходит при термической регенерации при температуре не менее 300-330°С в вакууме при остаточном давлении 0,1 мм рт.ст. либо при простой термической регенерации при 400-450°С [Н.В.Кельцев. Основы адсорбционной техники. М.: Химия. 1976. 511 с.]).

Кроме того, в отличие от способа по патенту РФ №2380153, способ по изобретению осуществляется в атмосфере, не требующей предварительной осушки, т.к. активация полученного адсорбирующего изделия происходит после смешения исходных компонентов и формования изделия в требуемую геометрическую конфигурацию. Из технологической схемы исключается операция создания атмосферы с фиксированным содержанием водяного пара, что существенно снижает энергозатраты при получении единицы конечного продукта.

Способ осуществляется следующим образом. Порошкообразный пористый адсорбирующий материал (адсорбент), в качестве которого используют цеолиты, силикагели либо их комбинации, смешивают в сухом виде в обычном смесителе в необходимом соотношении с полимерным связующим, в качестве которой используют полимеры фторпроизводных этилена, например фторопласт-42 марки «Ф-42 В» ГОСТ 25428-82. К полученной смеси в требуемом количестве добавляют растворитель, выбранный из ряда кетонов, например ацетон. После полного растворения полимерного связующего полученную суспензию вновь перемешивают любым известным способом до получения однородной массы.

Суспензию порошка адсорбента и полимерного связующего в растворителе формуют в сырое изделие любым известным способом, обеспечивающим необходимую для решения конкретной технической задачи геометрическую форму адсорбента (труба, цилиндр, кольцо, лист и т.д. Указанные формы могут иметь сотовую структуру.), например, с помощью экструдера либо литья. Полученное сырое изделие формованного адсорбента подвергают обработке, направленной на полное удаление растворителя. Это может быть либо сушка на воздухе, либо сушка в потоке газа, например воздуха при температуре выше 25°С, но ниже 45°С. После этого проводят активацию адсорбирующего изделия, например, в вакууме при остаточном давлении не более 5 мм рт.ст. и температуре 70-120°С до полного удаления растворителя.

После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 1.

Готовят исходную композицию, для чего 3,5 кг порошкообразного кристаллического цеолита (например, кристаллита NaX) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 30 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, отливкой дутьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 25°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 2

Готовят исходную композицию, для чего 7,5 кг порошкообразного кристаллического сорбента (например, цеолита NaA) с дисперсностью от 1 мкм до 6 мкм смешивают с 2,5 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 37,5 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, литьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 45°С, после чего подвергают термообработке в вакууме при температуре 70-110°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 3

Готовят исходную композицию, для чего 870 г порошкообразного кристаллического сорбента (например, кристаллита NaX) с дисперсностью от 1 мкм до 6 мкм смешивают с 130 г порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 1,3 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 35°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 4

Готовят исходную композицию, для чего 870 г порошкообразного кристаллического сорбента (например, силикагеля КСКГ) с дисперсностью от 1 мкм до 6 мкм смешивают с 130 г порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 1,75 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например вытягиванием, в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 35°С, после чего подвергают термообработке в вакууме при температуре 70-110°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 5

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, силикагеля КСМГ) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,0 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 10 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, литьем в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 35°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 4 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 6

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, кристаллита NaX и силикагеля КСМГ при весовом соотношении 1/1) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,1 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 12 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат на воздухе при температуре 45°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Пример 7

Готовят исходную композицию, для чего 4,0 кг порошкообразного кристаллического сорбента (например, кристаллита NaX и силикагеля КСМГ при весовом соотношении 1/1) с дисперсностью от 1 мкм до 6 мкм смешивают с 1,1 кг порошкообразного фторопласта в обычном смесителе. К полученной смеси добавляют 12 л ацетона. После полного растворения фторопласта полученную суспензию вновь перемешивают в этом же смесителе до получения однородной массы, после чего формуют в сырое изделие, например, экструзией в форму требуемой геометрической конфигурации (труба, цилиндр, кольцо, лист и т.д.). Полученной сырое изделие сушат в потоке воздуха, нагретого до температуры 40°С, после чего подвергают термообработке в вакууме при температуре 70-120°С и остаточном давлении 5 мм рт.ст. до полного удаления растворителя. После этого гибкое адсорбирующее изделие готово к эксплуатации.

Полученные по примерам 1-7 гибкие адсорбирующие изделия были исследованы в статических условиях стандартными методами с целью определения сорбционной емкости на единицу массы и кинетики процессов массопереноса при различных условиях на протяжении 10 циклов сорбция - десорбция. Методом дифференциального термического анализа были определены температуры термической деструкции полученных гибких адсорбирующих изделий (температура продолжительной эксплуатации этих изделий находится в области на 10-15°С ниже температуры термической деструкции). Значения модуля упругости при изгибе, характеризующего гибкие свойства полученных формованных изделий различной геометрической конфигурации, определялись согласно европейского стандарта EN 310 как отношение изгибающего момента М к моменту сопротивления W поперечного сечения образца, к которому приложена максимальная (разрушающая) нагрузка. Указанные выше характеристики в аналогичных условиях были определены и у специально синтезированного по примеру 2, описанному в патенте РФ №2380153, гибкого адсорбирующего изделия, содержащего в качестве полимерной матрицы эфир простых полиэфиров (торговая марка Hytrel, 30% весовых), а в качестве адсорбента - кристаллит NaX (70% весовых). Результаты представлены в таблице.

Таблица
Характеристики получаемых гибких адсорбирующих изделий
Способ получения Температура продолжительной эксплуатации сорбента, °С Статическая емкость по парам воды при φ=50%, мг/г Скорость поглощения паров воды при φ=50%, мг/г·час Модуль упругости при изгибе при 23°С, МПа
После получения После 10 циклов сорбция - десорбция После получения После 10 циклов сорбция - десорбция
По примеру 1 355 200,0 200,0 182,1 182,1 75
По примеру 2 350 182,1 182,0 166,4 166,3 72
По примеру 3 356 244,4 244,4 234,2 234,1 73
По примеру 4 352 261,6 261,5 247,9 247,8 73
По примеру 5 356 247,2 247,1 233,1 232,9 72
По примеру 6 356 253,3 253,4 242,2 242,3 71
По примеру 7 351 258,3 258,4 246,3 246,2 70
По патенту РФ №2380153 120 170,4 131,5 148,8 105,4 65

Как видно из приведенных в таблице данных, способ получения гибких адсорбирующих изделий по изобретению позволяет увеличить кинетические параметры процессов массопереноса сорбата и сорбционную емкость сорбента на единицу массы в многочисленных циклах сорбция - десорбция. Температура продолжительной эксплуатации полученных изделий увеличивается до 335-356°С, что не только расширяет область их применения, но и позволяет проводить их полную регенерацию (что принципиально невозможно для изделий, полученных по патенту РФ №2380153), т.е. многократно увеличивается срок их эксплуатации.

Предложенный способ обеспечивает получение гибких адсорбирующих изделий, обладающих более высоким значением модуля упругости при изгибе, т.е. более устойчивых к воздействию механических нагрузок.

Источник поступления информации: Роспатент

Показаны записи 191-200 из 442.
20.10.2015
№216.013.8313

Способ снижения радиолокационной заметности летательного аппарата

Изобретение относится к защитным устройствам летательного аппарата. Способ снижения радиолокационной заметности летательного аппарата заключается в размещении антенны головки самонаведения в герметичной полости радиопрозрачного обтекателя, заполнении полости плазмообразующей газовой смесью...
Тип: Изобретение
Номер охранного документа: 0002565158
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8321

Способ получения адсорбента диоксида углерода

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии оксидов щелочноземельных и/или гидроксидов щелочных и/или щелочноземельных металлов и нанесение дисперсии на...
Тип: Изобретение
Номер охранного документа: 0002565172
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.879d

Способ управления комбинированной силовой установкой гибридного транспортного средства

Изобретение относится к гибридным транспортным средствам. Способ управления комбинированной силовой установкой гибридного транспортного средства заключается в том, что в навигационную систему транспортного средства вводят данные о проходимом маршруте в 3D-формате и по сигналам навигационной...
Тип: Изобретение
Номер охранного документа: 0002566320
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.88a9

Способ изготовления блоков термоизоляционной герметичной стенки емкости нового типа из полимерных композиционных материалов для сжиженного природного газа

Изобретение относится к области судостроения и касается создания блоков термоизоляционной герметичной стенки из полимерных композиционных материалов (ПКМ) емкостей нового типа, используемых для перевозки жидких грузов и сжиженных газов. Изготовление блока производится за один технологический...
Тип: Изобретение
Номер охранного документа: 0002566588
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.88be

Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов

Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании...
Тип: Изобретение
Номер охранного документа: 0002566609
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.897a

Якорное устройство судна

Изобретение относится к области судостроения и касается вопроса использования нетрадиционной компоновки якорного устройства. Предложено якорное устройство судна, включающее якорный механизм, расположенный на внутренней палубе, по меньшей мере один якорь с трендом и лапами, связанный с якорным...
Тип: Изобретение
Номер охранного документа: 0002566797
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8981

Корпус водоизмещающего судна-полутримарана

Изобретение относится к области судостроения и касается конструирования обводов корпусов водоизмещающих судов, сочетающих элементы, характерные для обводов однокорпусных судов и тримаранов. Корпус водоизмещающего судна-полутримарана имеет носовую оконечность с обводами водоизмещающего...
Тип: Изобретение
Номер охранного документа: 0002566804
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8b63

Водоразбавляемая композиция

Изобретение относится к области водоразбавляемых лакокрасочных покрытий, получаемых методом электроосаждения на катоде, и может быть использовано для получения защитно-декоративных покрытий на стали, алюминии и его сплавах. Водоразбавляемая композиция включает эпоксиаминокаучуковый аддукт,...
Тип: Изобретение
Номер охранного документа: 0002567290
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bce

Способ получения 2,4,5-триметилбензойной (дуриловой) кислоты

Изобретение относится к способу получения дуриловой кислоты, применяемой в синтезе полиэфирных смол, пластификаторов, а также в производстве высокопрочных волокон для тканей аэростатов. Сущность изобретения заключается в окислении дурола водным раствором 50-58 мас.% азотной кислоты при...
Тип: Изобретение
Номер охранного документа: 0002567397
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e02

Штамп для штамповки крупногабаритных поршней

Изобретение относится к области металлургического машиностроения и может быть использовано при производстве поршней дизельных двигателей. В исходном состоянии пуансон 4 штампа для штамповки крупногабаритных поршней отведен цилиндром 6 по направляющим 5 в крайнее положение. Запорное кольцо 9...
Тип: Изобретение
Номер охранного документа: 0002567961
Дата охранного документа: 10.11.2015
Показаны записи 191-200 из 377.
20.07.2015
№216.013.62ba

Силовая установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям силовых установок подводных аппаратов. Силовая установка подводного аппарата содержит высокооборотный электродвигатель переменного тока, который соединен с движителем аппарата через редуктор. Редуктор выполнен одноступенчатым с...
Тип: Изобретение
Номер охранного документа: 0002556821
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6490

Двигательно-движительная установка подводного аппарата

Изобретение относится к судостроению, а именно к конструкциям двигательно-движительных установок подводных аппаратов, работающих на больших глубинах. Двигательно-движительная установка подводного аппарата содержит высокоскоростной электродвигатель, редуктор, магнитную муфту и движитель....
Тип: Изобретение
Номер охранного документа: 0002557291
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.68e4

Устройство управления приводом ведущих колес транспортного средства с расширенными функциональными возможностями

Изобретение относится к области транспортного машиностроения. Устройство управления приводом ведущих колес транспортного средства с расширенными функциональными возможностями содержит две обратимые электрические машины, два тяговых инвертора, блоки преобразования и накопления энергии, тепловой...
Тип: Изобретение
Номер охранного документа: 0002558405
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69ea

Способ работы двигателя на газообразном топливе

Изобретение относится к двигателестроению, а именно к двигателям, работающим на газообразном топливе, конвертированным из дизельных двигателей. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что при работе двигателя с газовой...
Тип: Изобретение
Номер охранного документа: 0002558667
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bf5

Несущая конструкции полужесткого дирижабля или вертостата

Изобретение относится к воздухоплаванию. Несущая конструкция полужесткого дирижабля или вертостата содержит центральную туннельную трубу (1) большого диаметра, проходящую вдоль центральной части оболочки по всей ее длине, силовые шпангоуты (2) кольцевой или треугольной формы, предусмотренные в...
Тип: Изобретение
Номер охранного документа: 0002559195
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c5d

Датчик дифференциального давления

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является уменьшение погрешности датчика разности давления....
Тип: Изобретение
Номер охранного документа: 0002559299
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c5e

Датчик давления

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки и техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является повышение надежности и работоспособности...
Тип: Изобретение
Номер охранного документа: 0002559300
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.72f9

Интегрированная система ориентации и навигации для объектов с быстрым вращением вокруг продольной оси

Изобретение относится к области навигационного приборостроения летательных аппаратов: искусственных спутников Земли, спускаемых космических аппаратов, управляемых снарядов и ракет. Технический результат - повышение точности и помехоустойчивости. Для этого на объекте устанавливаются три приемные...
Тип: Изобретение
Номер охранного документа: 0002561003
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.740b

Устройство для гидротермической обработки

Изобретение относится к устройству для гидротермической обработки поглотительной кассеты, включающему резервуар, содержащий подающий патрубок для подачи газа и распределитель потока, расположенный в резервуаре. Устройство характеризуется тем, что резервуар выполнен в виде корпуса с верхней и...
Тип: Изобретение
Номер охранного документа: 0002561282
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.748d

Способ получения продукта для регенерации воздуха

Изобретение относится к способам получения продуктов для регенерации воздуха, используемых в системах жизнеобеспечения человека при создании локальных дыхательных атмосфер. Способ получения продукта для регенерации воздуха заключается во взаимодействии раствора пероксида водорода и гидроксида...
Тип: Изобретение
Номер охранного документа: 0002561412
Дата охранного документа: 27.08.2015
+ добавить свой РИД