×
10.02.2013
216.012.247e

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ПАССИВНОГО КОСМИЧЕСКОГО ОБЪЕКТА ПРИ СБЛИЖЕНИИ С НИМ АКТИВНОГО КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002474844
Дата охранного документа
10.02.2013
Аннотация: Изобретение относится к области космической техники, а именно к области лазерных локационных систем (ЛЛС), используемых для обеспечения сближения космических аппаратов (КА). Сканирование производится путем вращения активного КА с жестко установленной ЛЛС вокруг строительной оси «-ОХ» активного КА до обнаружения пассивного космического объекта. Ширина диаграммы зондирующего излучения ЛЛС в одном направлении минимальная, а в перпендикулярном направлении угол расходимости равен углу раствора конуса, образующего зону обзора. Технический результат - повышение надежности за счет исключения оптико-механического сканирования с использованием движущихся деталей, особенно для целей обнаружения объекта в условиях космического полета. 4 ил.
Основные результаты: Способ обнаружения пассивного космического объекта при сближении с ним активного космического аппарата (КА), включающий сканирование лазерной локационной системой (ЛЛС), отличающийся тем, что сканирование производят путем вращения активного КА с жестко установленной упомянутой ЛЛС вокруг строительной оси «-ОХ» активного КА до обнаружения пассивного космического объекта, при этом ширина диаграммы зондирующего излучения ЛЛС в одном направлении минимальная, а в перпендикулярном направлении угол расходимости равен углу раствора конуса, образующего зону обзора.

Изобретение относится к области космической техники, а именно к области лазерных локационных систем (ЛЛС), используемых для обеспечения сближения космических аппаратов (КА).

В общем случае ЛЛС включает в себя источник лазерного излучения, фотоприемник, передающую и приемную оптические системы, блок выдачи информации [1].

Поиск ЛЛС пассивного объекта в заданном секторе пространства является сложной задачей. Для облегчения процесса наведения на объект могут быть использованы дополнительные технические средства:

размещение на пассивном объекте лазерного маяка; установка на активном КА пассивных широкоугольных датчиков [2].

Однако установка на пассивном КА лазерных маяков, являющихся активными излучающими устройствами, приводит к снижению надежности, а использование дополнительных пассивных датчиков на активном КА нежелательно из-за увеличения веса и энергопотребления. Использование только одной сканирующей ЛЛС на активном КА позволяет значительно упростить состав аппаратуры и повысить надежность.

Для поиска и обнаружения ЛЛС пассивного объекта необходимо производить последовательный просмотр области целеуказания узким сканирующим полем по определенным траекториям. Перемещение приемопередающей системы может осуществляться по различным законам.

В известных технических решениях выбор траектории сканирования ЛЛС производится в зависимости от формы области целеуказания, заданного времени на ее обзор, конструктивных возможностей реализации, а также вероятностей обнаружения цели в различных участках области. Наиболее распространенные траектории сканирования - спиральная и строчная [1].

Строчное сканирование является распространенным видом обзора области целеуказания прямоугольной формы. При этом скорость поступательного перемещения оптической оси вдоль одной координаты превышает скорость ее перемещения вдоль другой.

Известен способ сканирования лазерного локатора, заключающийся в построчном сканировании [3] (см. фиг.1) области целеуказания сколлимированным лазерным лучом синхронно с узким полем зрения приемника посредством двух сканирующих зеркал. Локатор может излучать как в непрерывном, так и в импульсном режиме.

Зеркало строчной развертки работает на частоте 100 Гц и имеет размеры 2,5×2,5 см, зеркало кадровой развертки работает на частоте 2 Гц и имеет размеры 2,5×5 см. Максимальный угол области целеуказания составляет 0,17 рад.

В подобных системах для обеспечения требуемого темпа просмотра области целеуказания используется высокая частота повторения зондирующих импульсов, что приводит к расширению спектра сигнала и ухудшению отношения сигнал/шум.

За прототип принят способ сканирования лазерного локатора, осуществляющего просмотр зоны обзора с помощью плоского луча [4], освещающего одним зондирующим импульсом сразу целую строку прямоугольной области целеуказания (см. фиг.2). Луч имеет так называемую «ножевую» диаграмму направленности с различной шириной в меридиональной и сагиттальной плоскостях. Ширина диаграммы излучения в направлении сканирования минимальная, а в перпендикулярном направлении угол расходимости равен длине строки. Для сканирования области целеуказания в направлении кадрового просмотра используется вращающееся зеркало.

Достоинством данной системы является улучшение помехозащищенности за счет уменьшения частоты повторения зондирующих импульсов и упрощение кинематической схемы.

Недостатком аналогов и прототипа является использование оптико-механического сканирования. Трудности заключаются в ограниченных значениях скоростей движения сканирующих элементов, их износе в процессе эксплуатации и ограниченном сроке службы. Также, серьезной технической проблемой является обеспечение надежности движущихся и вращающихся деталей в условиях космического вакуума.

Задачей изобретения является повышение надежности за счет исключения оптико-механического сканирования с использованием движущихся деталей, особенно для целей обнаружения объекта в условиях космического полета.

Задача решается тем, что сканирование производится путем вращения активного КА с жестко установленной упомянутой ЛЛС вокруг строительной оси «-ОХ» активного КА до обнаружения пассивного космического объекта, при этом ширина диаграммы зондирующего излучения ЛЛС в одном направлении минимальная, а в перпендикулярном направлении угол расходимости равен углу раствора конуса, образующего зону обзора.

Данный способ может использоваться для обнаружения как кооперируемых объектов, так и некооперируемых.

Область целеуказания имеет форму круга. Центр области целеуказания совпадает с направлением полета, линия визирования параллельна строительной оси «-ОХ» активного КА.

Используется «ножевая» диаграмма направленности зондирующего излучения ЛЛС: в одной из плоскостей угол расходимости β зондирующего излучения равен углу раствора конуса α, образующего зону обзора. Диаграмма направленности излучения также параллельна строительной оси «-ОХ» активного КА (см. фиг.3).

Поиск объекта локации осуществляется вращением активного КА вокруг строительной оси «-ОХ». Если пассивный объект находится в пределах зоны обзора, то он попадет в поле зрения ЛЛС за время, не большее половины продолжительности разворота активного КА по крену. После обнаружения объекта локации вращение останавливается и осуществляется ориентирование оси «-ОХ» на объект. Наведение на пассивный объект производится путем разворота активного КА с помощью системы управления по информации, поступающей из ЛЛС в бортовые системы.

Для получения соответствующей диаграммы направленности используется оптическая анаморфотная система. Особенностью анаморфотной системы является то, что в меридиональной и сагиттальной плоскостях ее фокусные расстояния имеют различные значения. Принципиально в анаморфотной системе могут быть применены преломляющие поверхности самых разнообразных форм, чаще всего используются цилиндрические линзы.

В одной плоскости оптическая система представляет собой широкоугольный объектив с полем зрения, равным угловому размеру области целеуказания (например, для величины 30° это объектив типа «Зенитар», «Пентар-35», или «Телемар-17»), а в другой - набор плоскопараллельных пластин.

Используется многоэлементный приемник излучения - линейка фотоприемников (например, линейка ПЗС или линейка фотодиодов), мгновенное поле зрения которого совпадает с диаграммой направленности излучения ЛЛС. Сканирование производится вращением активного КА вокруг строительной оси «-ОХ» (по крену), см. фиг.4.

После обнаружения пассивного объекта для его сопровождения может использоваться дополнительный излучающий узконаправленный канал, входящий в штатный состав ЛЛС. В режиме сопровождения сканирование в пределах малых углов (достаточное для того, чтобы избежать срыва сопровождения и выхода объекта из поля зрения) может также выполняться с помощью акусто- или электрооптических дефлекторов, что позволяет и на этом этапе отказаться от движущихся механических деталей.

Таким образом обеспечивается надежность за счет отказа от оптико-механического сканирования, что повышает вероятность выполнения программы полета КА.

В конструкции может быть использован один или несколько твердотельных лазеров с диодной накачкой, волоконных лазеров, полупроводниковых лазеров.

Сканирование круговой области вращением КА по крену имеет значительные преимущества перед другими способами сканирования. Для полного просмотра всей области целеуказания таким сканирующим полем достаточно половины оборота вокруг оси «-ОХ». Предположим, что скорость разворота КА равна 0,05 рад/с. Тогда для полного обзора вращением КА вокруг строительной оси «-ОХ» понадобится 60 с. Просмотр прямоугольной области целеуказания 30°×30° разворотом КА по тангажу займет 10 с. Однако, если объект локации не был обнаружен сразу (например, при превышении предельной дальности ЛЛС или наличии большого количества помех), то необходим повторный просмотр области целеуказания (возможно, неоднократный). Повторный просмотр при сканировании вращением КА по крену может производиться сразу же после предыдущего. Троекратный просмотр займет 180 с. Для повторного просмотра при развороте по тангажу потребуется либо изменить направление движения КА на противоположное, что потребует дополнительных расходов рабочего тела, либо ждать 115 с, пока КА полностью развернется по тангажу на 330° для нового прохода зоны поиска. Троекратный поиск займет всего 380 с.

Использование широкой диаграммы направленности зондирующего излучения может привести к уменьшению мощности сигнала, отраженного от объекта локации, что, в свою очередь, снижает дальность действия ЛЛС. Поэтому для обоснования возможности практической реализации проведем оценку возможностей ЛЛС.

Исходные данные: угловой размер области целеуказания равен 30°; ЛЛС излучает в импульсном режиме, ширина диаграммы излучения в направлении сканирования равна 0,001 рад; таким образом, сканирование осуществляется диаграммой 3′26"×30° (5,24·10-4 ср); мощность зондирующего импульса составляет 200000 Вт.

Время на поиск цели принимается равным 60 с, угловая скорость вращения активного КА по крену составляет 0,05 рад/с. Частота повторения зондирующих импульсов f в таком случае должна быть не меньше 50 Гц. Частота повторения зависит от допустимого времени обзора одного элемента области целеуказания. Это время определяется числом зондирующих импульсов, необходимых для обнаружения с достаточной вероятностью объекта локации. Для надежной работы ЛЛС желательно, чтобы при каждом сканировании на цель попадало не менее пяти зондирующих импульсов [5]. В этом случае частота повторения будет равна f=250 Гц. Если на поиск пассивного объекта выделяется 180 с, то тогда f=90 Гц.

Эффективная поверхность рассеяния пассивного объекта (пассивного КА) составляет Sоб=15 м2; коэффициент отражения ρоб=0,8; предполагается, что корпус объекта рассеивает падающее излучение по закону Ламберта.

Предельная дальность импульсной дальномерной системы может быть приближенно оценена по формуле

где Рu=200000 Вт - мощность зондирующего излучения; Рn=10-12 Вт - минимальная принимаемая мощность отраженного сигнала; Ωu=5,24·10-4 ср - телесный угол, в котором распространяется зондирующий импульс; Sn=2,83·10-3 м - площадь апертуры приемной оптики (соответствует диаметру входного зрачка 6 см); τun=0,5 - коэффициенты пропускания передающего и приемного оптических трактов.

Дальность обнаружения пассивного объекта на фоне космоса составит Lmax=31869 м.

Литература

1. Малашин М.С., Каминский Р.П., Борисов Ю.Б. Основы проектирования лазерных локационных систем. - М.: Высшая школа, 1983. - 207 с.

2. Старовойтов Е.И. Использование лазерных систем в решении задачи встречи КА на орбите Луны // Авиакосмическое приборостроение. - 2010. - №11. - С.12-17.

3. Lamberts C.W. Active imaging system: a long-range scanned laser. - Appl. Opt., 1976, v.15, N 5, p.1284.

4. Пат. 4119379 (США). МКИ G01C 3/08.

5. Росс М. Лазерные приемники. - М.: Мир, 1969.

Способ обнаружения пассивного космического объекта при сближении с ним активного космического аппарата (КА), включающий сканирование лазерной локационной системой (ЛЛС), отличающийся тем, что сканирование производят путем вращения активного КА с жестко установленной упомянутой ЛЛС вокруг строительной оси «-ОХ» активного КА до обнаружения пассивного космического объекта, при этом ширина диаграммы зондирующего излучения ЛЛС в одном направлении минимальная, а в перпендикулярном направлении угол расходимости равен углу раствора конуса, образующего зону обзора.
СПОСОБ ОБНАРУЖЕНИЯ ПАССИВНОГО КОСМИЧЕСКОГО ОБЪЕКТА ПРИ СБЛИЖЕНИИ С НИМ АКТИВНОГО КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОБНАРУЖЕНИЯ ПАССИВНОГО КОСМИЧЕСКОГО ОБЪЕКТА ПРИ СБЛИЖЕНИИ С НИМ АКТИВНОГО КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОБНАРУЖЕНИЯ ПАССИВНОГО КОСМИЧЕСКОГО ОБЪЕКТА ПРИ СБЛИЖЕНИИ С НИМ АКТИВНОГО КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОБНАРУЖЕНИЯ ПАССИВНОГО КОСМИЧЕСКОГО ОБЪЕКТА ПРИ СБЛИЖЕНИИ С НИМ АКТИВНОГО КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 241-250 из 370.
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b700

Космический модуль

Изобретение относится преимущественно к космическим аппаратам (КА) с малыми космическими модулями (КМ) для оптико-электронного наблюдения Земли. КМ включает в себя призматический силовой корпус блочного типа. На торцевой панели установлена одноразовая (для гашения остаточной угловой скорости КА...
Тип: Изобретение
Номер охранного документа: 0002614461
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b71b

Способ формирования управляющих воздействий на космический аппарат с силовыми гироскопами и поворотными солнечными батареями

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА. В момент отказа измерителя угловой скорости КА фиксируют суммарный вектор кинетич. момента КА и...
Тип: Изобретение
Номер охранного документа: 0002614467
Дата охранного документа: 28.03.2017
Показаны записи 241-250 из 289.
13.01.2017
№217.015.8e93

Способ управления транспортной космической системой

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля...
Тип: Изобретение
Номер охранного документа: 0002605463
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ec0

Импульсная реактивная двигательная установка космического аппарата

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан...
Тип: Изобретение
Номер охранного документа: 0002605163
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ee2

Способ полуавтоматического управления причаливанием

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию...
Тип: Изобретение
Номер охранного документа: 0002605231
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
+ добавить свой РИД