×
10.02.2013
216.012.245d

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ

Вид РИД

Изобретение

№ охранного документа
0002474811
Дата охранного документа
10.02.2013
Аннотация: Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Проводится регистрация в ИК-диапазоне спектров поглощения паров токсичных веществ и их идентификация по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных. Сканирование сигнала осуществляют в оптической насадке, проводящей разогрев индицируемой поверхности, возгонку сорбированного вещества и его концентрацию в узком оптическом тракте, а также дающей большой температурный контраст на трассе наблюдения индицируемого вещества для повышения чувствительности метода обнаружения. Наличие теплового контраста позволяет повысить чувствительность дистанционных приборов химической разведки пассивного типа. 4 ил., 3 табл.
Основные результаты: Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия с применением оптической насадки, заключающийся в регистрации в ИК диапазоне спектров поглощения паров токсичных веществ, их идентификацию по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных, отличающийся тем, что с помощью нагревательного элемента, служащего большим температурным контрастом и размещенного на конце трубки оптической насадки, проводят возгонку сорбированного вещества и его концентрирование в узком оптическом тракте, а затем осуществляют сканирование сигнала.

Изобретение относится к оптическим методам измерения физико-химических характеристик газовых сред. Техническим результатом является разработка способа обнаружения зараженности различных поверхностей токсичными химикатами (ТХ) пассивными инфракрасными (ИК) спектрометрами дистанционного действия с применением оптической насадки.

В современных условиях идет интенсивное развитие дистанционных средств контроля зараженности парами ТХ атмосферы на основе пассивных инфракрасных спектрометров (М21, JSLSCAD, RAPID, ПХРДД-1(2, 3) и другие). Но вопросы индикации зараженности ТХ различных поверхностей являются до настоящего времени недостаточно решенными.

Для определения зараженности поверхности ТХ используются различные подходы. В одних предполагается отбор пробы с последующим ее анализом в стационарной аналитической лаборатории, в других проводится использование технических устройств для анализа атмосферы по вторичным парам ТХ над зараженной поверхностью с помощью индикаторных трубок или газоанализаторов, работающих на методе спектрометрии ионной подвижности. В случае обнаружения на поверхности подозрительных жидких капель возможно применение для их индикации индикаторных бумажек или элементов. Однако эти подходы обладают рядом существенных недостатков: длительностью времени в проведении анализа, низкой специфичностью, низкой производительностью, потребностью в расходных материалах и так далее.

Одним из наиболее эффективных методов контроля зараженности ТХ различных поверхностей является применение бортового мобильного масс-спектрометра ММ-1 фирмы Брюкер [1]. Прибор предназначен для определения паров ТХ в воздухе и на различных поверхностях в жидкой фазе. Унифицированная изолированная система отбора проб обеспечивает проведение анализа как на месте, так и в движении. Система полностью управляется бортовым компьютером, база данных содержит информацию о 150 соединениях. Чувствительность определения находится на уровне 10 мг/м2 по поверхностному заражению. Однако и этот метод имеет свои недостатки, связанные со сложностью пробоотбора, невозможностью проведения анализа с впитавшей капли ТХ поверхности, длительностью анализа.

В настоящее время как у нас в стране, так и за рубежом наиболее перспективным дистанционным методом контроля загрязнений атмосферы ТХ является пассивная ИК-спектрометрия. Классическое их предназначение - обнаружение паров ТХ в атмосфере [2].

Следует отметить, что физические принципы, заложенные в основу принципа действия пассивных ИК-спектрометров, алгоритмы регистрации и обработки спектральной информации ориентированы на работу в условиях приземных наклонных трасс и незначительных температурных контрастов.

Как видно из (см. фиг.1), спектральная мощность энергетической яркости излучения, регистрируемого прибором Ввх(ν, β, ΔТ), состоит из трех компонентов:

- яркость фонового излучения атмосферы Вф(ν, β, Тф), где β - угол места локации, ослабленного, согласно закону Бугера-Ламберта, в облаке со спектральным пропусканием τ(ν) и на атмосферной трассе наблюдения с пропусканием τа(ν);

- излучение облака, равное, по закону Кирхгофа, BAЧT(ν, Ta)(1-τ(ν)), ослабленное на той же трассе;

- собственное излучение трассы ВАЧТ(ν, Та)(1-τа(ν)).

То есть

Bвх(ν, β, ΔT)=Вф(ν, β, Тф)τ(ν)τa(ν)+ВАЧТ(ν, Та)(1-τ(ν)) τa(ν)+ВАЧТ(ν, Та)(1-τа(ν))

Это определяет способность таких приборов регистрировать и идентифицировать загрязняющие приземную атмосферу вещества, находящиеся в парогазовом состоянии.

Наиболее близким по технической сущности к заявляемому способу является способ, реализованный в Фурье-спектрометре с охлаждаемым ИК-приемным каналом и разработанный под руководством А.Н.Морозова авторским коллективом ЦПФ МГТУ им. Н.Э.Баумана в 2004 под названием ПХРДД-2 [2]. Прибор обладает большой светосилой, позволяет одновременно регистрировать протяженные участки оптического спектра за короткое время и обеспечивает возможность ведения одновременной индикации достаточно широкого перечня токсичных веществ и определения смесей веществ с оценкой концентрации каждого компонента в паровой фазе на значительных расстояниях при наличии малых тепловых контрастов (около 2°С).

Быстродействие прибора не более 1 с обеспечивает своевременное обнаружение объектов индикации.

Чувствительность прибора, в главной степени, зависит от чувствительности ИК-приемной системы и составляет для паров ТХ при интегральной плотности паров в облаке не менее 50 мг/м2. На чувствительность системы также будут оказывать влияние степень заполнения облаком паров индицируемого вещества поля зрения, концентрация паров, уровень теплового контраста.

В 2009 году ими же разработан прибор ПХРДД-3 с неохлаждаемым ИК-приеником. Данный прибор является аналогом ПХРДД-2 с уменьшенными массой, габаритными размерами и энергопотреблением, что позволило образец сделать в носимом варианте.

Нами разработан способ обнаружения зараженных поверхностей ТХ на основе применения насадки и прибора ПХРДД-2(3), наряду с решением их традиционных задач.

Насадка представляет собой фиксированную в ИК-канале прибора трубку с раструбом (см. фиг.2) и нагревательным элементом на конце трубки (см. фиг.3).

Наличие трубки позволяет концентрировать возгоняемое вещество в узком объеме поля зрения прибора. Диаметр трубки определяется диаметром поля зрения прибора, а длина трубки - удобством эксплуатации устройства. Раструб на конце трубки позволяет с большей площади поверхности проводить возгонку вещества и концентрировать его в трубке, изолировать от окружающей атмосферы возгоняемые пары, а также избегать возможности прямого контакта нагревательного элемента с анализируемой поверхностью.

Нагревательный элемент может нагреваться до температур, при которых не происходит разложение анализируемого вещества. В нашем случае он нагревался до температуры около 150°С напряжением 12 В, не касаясь поверхности на расстоянии 3-5 мм. Нагревательный элемент выполняет две функции:

- разогревает индицируемую поверхность и таким образом возгоняет сорбированное вещество;

- служит большим температурным контрастом для возможности обнаружения на трассе наблюдения индицируемого вещества.

Наличие такого теплового контраста позволяет значительно повысить чувствительность дистанционных приборов химической разведки пассивного типа в сравнении с чувствительностью прибора при работе с использованием естественного теплового контраста.

Для апробирования способа нами была разработана экспериментальная установка (см. фиг.4), представляющая собой прибор ПХРДД-2, соединенный и съюстированный с оптической насадкой.

Экспериментальную оценку способа мы проводили на различных поверхностях: песчаный грунт, деревянная поверхность (фанера), обмундирование. Эксперимент проводили с использованием веществ, имеющихся в базе данных прибора ПХРДД-2: ацетон, этанол, изопропанол. База данных может пополняться.

На индицируемую поверхность наносились с помощью медицинского шприца три капли индицируемого вещества весом около 20 мг на площадь 20 см2. Выдерживалось около 5 мин и проводилось зондирование зараженной поверхности с помощью прибора ПХРДД-2. Для соблюдения условий юстировки прибор и раструб находились в фиксированном положении в штативах, а индицируемая поверхность подводилась к раструбу с нагревательным элементом.

Результаты экспериментов представлены в таблицах 1-3.

Таблица 1
Обмундирование
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 3766 0,85 ±181
3400
3540
3369
Изопропанол 1388 0,88 ±65
1429
1539
1475
Ацетон 1171 0,90 ±62
1313
1240
1195

Таблица 2
Дерево
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 2188 0,85 ±312
2859
2831
2569
Изопропанол 440 0,88 ±58
564
444
477
Ацетон 1135 0,90 ±72
1129
1285
1194

Таблица 3
Песчаный грунт
Вещество Плотность концентрации, мг/м2 Коэффициент корреляции Среднеквадратическое отклонение
Этанол 2336 0,86 ±142
2647
2452
2357
Изопропанол 889 0,88 ±92
869
689
773
Ацетон 2762 0,89 ±533
3929
3387
2854

Литература

1. Сивцов Г.А., Кауров Н.Е., Политов Ю.Н., Таранченко В.Ф., Цехмистер В.И. Система технических средств химической разведки и химического контроля армий стран НАТО. - М.: ВУРХБЗ, 2003, 120 с.

2. Морозов А.Н. Основы фурье-спектрорадиометрии / Под ред. Васильева Г.К. - М.: Наука, 2006, 275 с.

Способ обнаружения зараженности различных поверхностей токсичными химикатами пассивными инфракрасными спектрометрами дистанционного действия с применением оптической насадки, заключающийся в регистрации в ИК диапазоне спектров поглощения паров токсичных веществ, их идентификацию по максимальному коэффициенту корреляции спектра сигнала с образцовыми спектрами базы данных, отличающийся тем, что с помощью нагревательного элемента, служащего большим температурным контрастом и размещенного на конце трубки оптической насадки, проводят возгонку сорбированного вещества и его концентрирование в узком оптическом тракте, а затем осуществляют сканирование сигнала.
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЗАРАЖЕННОСТИ РАЗЛИЧНЫХ ПОВЕРХНОСТЕЙ ТОКСИЧНЫМИ ХИМИКАТАМИ ПАССИВНЫМИ ИНФРАКРАСНЫМИ СПЕКТРОМЕТРАМИ ДИСТАНЦИОННОГО ДЕЙСТВИЯ
Источник поступления информации: Роспатент
+ добавить свой РИД