×
10.02.2013
216.012.2454

Результат интеллектуальной деятельности: СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах рабочего потока составляющих скорости, соответствующих безграничному обтеканию испытываемой модели. Технология основана на применении наклонных отверстий, клапанов и поверхностей в стенке, позволяющих отбирать из потока и нагнетать в поток воздух из камеры давления навстречу действующему местному перепаду статических давлений, как это требуется на отдельных участках линий тока при безграничном обтекании. Предложено устройство для реализации нового способа адаптации. Технический результат - разработка способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов. 2 н.п. ф-лы, 7 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах.

При создании аэродинамических труб (АДТ) остро стоит проблема влияния границ потока на точность эксперимента.

Ранее она решалась простым отодвиганием границ, т.е. увеличением размеров (диаметров) рабочей части, что существенно удорожало аэродинамический эксперимент.

Первым реальным и технически правильным способом решения этой проблемы явилось применение гибких стенок рабочей части, повторяющих линии тока набегающего и обтекающего модель потока воздуха. Этот способ впервые применен для труб малых скоростей в 1944 году, и он применяется также в настоящее время (см. Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.51-95). Настройки приграничных течений с помощью гибких стенок сложны и практически непригодны при моделировании трехмерных пространственных течений.

Особенно остро проблема влияния границ потока встала при создании АДТ с околозвуковыми скоростями. Ее частичным решением стало применение перфорированных рабочих частей (см. Сборник работ по взаимодействию сверхзвуковых потоков с перфорированными границами. БНИ ЦАГИ, 1961). Полупроницаемые стенки с одной камерой давления (КД) и перфорацией в виде круглых отверстий и щелей позволяют решить некоторые, но не все проблемы индукции (влияния границ потока). Главная трудность здесь заключается в том, что направление действия перепада давлений на перфорированной границе не всегда совпадает с необходимым для безындукционного обтекания модели направлением течения через нее.

Для согласования направления действительного течения газа через стенку с тем направлением, которое соответствует безграничному обтеканию, было предложено секционирование камеры давления (КД), окружающей перфорированную рабочую часть [Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.3-50].

Секционирование камеры давления было применено в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ и их сравнение между собой. В случае несовпадения этих распределений производят перенастройку параметров потока вдоль стенок рабочей части, для чего в различных секциях камеры давления создают различное давление, регулированием которого меняют направление движения газа через отверстия отдельных секций перфорации. Этот способ адаптации взят нами за прототип. Однако технические трудности по созданию таких рабочих частей даже для плоского (двухмерного) случая оказались очень большими. Для пространственных течений, которые представляют наибольший практический интерес, трудности по созданию и управлению секциями возрастают на порядок, что и является, по-видимому, причиной отсутствия действующих адаптируемых рабочих частей для исследования трехмерных объектов.

Рассмотрим причины, не позволяющие получить безындукционное обтекание модели в обычной перфорированной рабочей части с одной окружающей ее камерой давления. На фиг.1 приведено (из упомянутого Обзора №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.7) распределение статического давления и вертикальной составляющей скорости вдоль плоскости, расположенной на расстоянии трех хорд у=3с от обтекаемого профиля. Профиль имеет чечевицеобразную форму, толщину 6% и располагается в невозмущенном потоке с числом Маха М=0,91 на участке х/с=-0,5 и х/с=0,5 (т.е. его центр находится в начале координат, длина хорды равна 1). Из фиг.1 видно, что распределение давления дважды проходит через линию, где меняется направление действия перепада давления (P1/P=1 и ΔP1/P=0), a вертикальная составляющая скорости V/U лишь в одной точке проходит через нуль и соответственно также меняет свой знак. Если теперь представить на рассматриваемой линии у=3c=const проницаемую границу рабочей части аэродинамической трубы, то требования к этой границе будут очень сильно отличаться на различных ее участках:

1. На участке АВ (фиг.1) со стороны рабочей части статическое давление на стенке больше, чем в невозмущенном потоке и, соответственно, в камере давления ΔР1>0. Вертикальная составляющая скорости направлена также в камеру давления V/U>0. Оба параметра имеют один знак и требуемая вертикальная составляющая скорости может быть получена на перфорированной стенке с обычными отверстиями. Величина этой составляющей определяется только коэффициентом проницаемости, который должен быть лишь правильно подобран.

2. На участке ВС (фиг.1) статическое давление на стенке со стороны рабочего потока уже меньше статического давления в камере давления, а вертикальная составляющая скорости по-прежнему должна быть направлена в камеру давления V/U. Параметры имеют разные знаки. На этом участке обычная перфорация не может обеспечить условий безындукционного обтекания в силу разного знака у скорости газа в отверстии и перепада статических давлений на нем.

3. На участке СД (фиг.1) перепад давлений на перфорированной стенке направлен, как и на предыдущем участке ВС, из камеры давления в рабочий поток ΔP1/P<0 и вертикальная составляющая скорости потока также направлена внутрь рабочей части (V/U<0). Оба параметра имеют один знак и все проблемы согласования расхода и перепада могут быть решены с помощью надлежащего выбора коэффициента проницаемости обычной перфорации.

4. На участке ДЕ (фиг.1) давление внутри рабочей части снова выше, чем в камере давления ΔP1/P>0, но при этом вертикальная составляющая скорости должна быть отрицательной V/U<0, т.е. газ должен втекать в рабочую часть. Параметры имеют разные знаки, и обычная перфорация не может обеспечить такого режима на границе потока.

Задача настоящего изобретения и технический результат заключаются в разработке способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов.

Решение задачи и технический результат достигаются тем, что в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ, их сравнение между собой и, в случае несовпадения этих распределений, перенастройку параметров потока вдоль стенок рабочей части, отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке с клапанами, которые отклоняют навстречу потоку и далее эжектируют эту часть в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Принудительный отбор воздуха из рабочей части и эжектирование воздуха в рабочую часть производятся за счет скоростного напора рабочего потока.

Решение задачи и технический результат достигается также тем, что в конструкции адаптируемой рабочей части аэродинамической трубы, включающей камеру давления и проницаемые стенки, последние снабжены отверстиями и щелями со специальными клапанами, отклоняемыми на углы α±45° для принудительного отбора воздуха из рабочей части и эжектирования воздуха в рабочую часть за счет скоростного напора рабочего потока.

На фиг.1 приведены распределения статического давления и значения вертикальной составляющей скорости на уровне стенки рабочей части при безграничном обтекании.

На фиг.2 приведена схема полной процедуры адаптации рабочей части с регулированием скоростей возмущенного моделью течения на контрольной поверхности по предлагаемому способу.

На фиг.3 приведена схема отверстия с клапаном, выступающим в поток и наклоненным против потока.

На фиг.4 приведена схема отверстия с клапаном, выступающим в поток и наклоненным по потоку.

На фиг.5 приведены экспериментальные зависимости вертикальной составляющей скорости вблизи стенки рабочей части от перепада давлений на ней для клапанов, приведенных на фиг.3 и 4.

На фиг.6 и 7 приведены еще два варианта клапанов со схемами течения воздуха в предлагаемом устройстве.

Предложенный способ адаптации границ потока в трансзвуковой аэродинамической трубе реализуется по процедуре, полностью приведенной на фиг.2. Процедура адаптации начинается с вывода АДТ на рабочий режим и установки испытываемой модели на необходимый угол атаки. В этом положении производят измерения структуры (параметров) потока в рабочей части вблизи границ. Затем производят расчет этих же параметров по основным уравнениям аэромеханики в предположении безграничного обтекания модели. Эти распределения сравнивают между собой и, если распределения не совпадают, то ищут поправки в геометрию граничной стенки. После внесения этих поправок снова производят измерения параметров потока и расчеты при безграничном обтекании. Процедуру продолжают до совпадения этих распределений с заданной точностью, для чего может потребоваться 5-7 итераций.

Отличие данного предложения от аналогов и прототипа заключается в радикальном изменении технологии настройки составляющих возмущенной скорости потока на границах рабочей части. Для перенастройки параметров вдоль стенок рабочей части отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке рабочей части трубы с клапанами, которые отклоняют навстречу потоку и далее эжектируют ее (часть) в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Для создания потоков газа через отверстия стенки рабочей части, имеющих направление, обратное действующему местному перепаду давления, в предлагаемом способе используется скоростной напор основного сносящего потока.

В предлагаемом способе адаптации перфорированной границы аэродинамической трубы используют только одну камеру давления, но реализуют получение любых распределений вертикальной составляющей скорости независимо от направления местного действующего на стенку перепада давлений, как и в многосекционной камере давления.

Для реализации предлагаемого способа адаптации проницаемой границы аэродинамической трубы предлагается новая конструкция стенок рабочей части. Она должна включать клапаны с наклонными поверхностями, например по схемам на фиг.3 и 4. Ниже в подтверждение наших предложений приводятся результаты экспериментальной проверки. На фиг.3 и 4 приведены схемы отверстий с клапанами, выступающими в поток и наклоненными против потока и по потоку, где 1 - отверстие, 2 - рабочая поверхность клапана. Отверстие с клапаном фиг.3 отбирает часть основного потока даже при значительных обратных перепадах давления, что и требуется на участке ВС (фиг.1). При обратном наклоне рабочей поверхности клапана, выступающего в поток (фиг.4), основное течение будет эжектировать газ из камеры давления даже при некотором обратном перепаде давления, что и требуется на участке ДЕ перфорированной границы (фиг.1).

На фиг.6 и 7 приведены еще две конструктивные схемы клапанов, регулирующих расход и направление движения газа, также пригодных для адаптации границ потока в трансзвуковой аэродинамической трубе. Клапаны 2 могут перемещаться перпендикулярно потоку и поворачиваться на углы α от 0 до ±45° (фиг.6а). Для отбора части рабочего потока в камеру давления поверхности в отверстиях стенки выдвигают навстречу потоку (фиг.6б и 7б). В случае необходимости эжектирования ее из камеры давления в основной поток отверстия и поверхности в стенке наклоняют и выдвигают в противоположную сторону (фиг.6в и 7в). Клапаны могут применяться как в отверстиях, так и в продольных щелях. На фиг.6 диаметр клапана 2 практически равен диаметру отверстия 1 и работает это устройство только выдвижением наклонных поверхностей в поток. На фиг.7 диаметр клапана значительно меньше диаметра отверстия и он работает не только при выдвижении (отклонении) рабочих поверхностей в поток, но и как обычная перфорация. Управляющие приводы клапанов на фиг.6 и 7 для простоты опущены.

На фиг.5 представлены экспериментальные расходные характеристики испытанных клапанов - зависимости нормальной к стенке составляющей скорости V/U от относительного перепада давления на стенках ΔР/ρu2 (для случая звуковой скорости сносящего потока Мрч=1). Кривые 1 и 2 получены при положении (ориентации) клапана навстречу потоку, кривые 3, 4 и 5 при повороте рабочей поверхности клапана на 180° и ее ориентации по потоку. Кривые 2 и 3 сняты при наклоне рабочей поверхности клапана относительно направления потока на 5° (выступание в поток на 2 мм), кривые 1 и 4 при отклонении стенки на 10°, кривая 5 - при отклонении соответственно на 15°. Здесь же линией 6 изображена типичная характеристика стенки с обычным отверстием (например, в виде поперечной щели с относительной площадью 5%).

Из фиг.5 следует, что характеристики предлагаемых клапанов качественно отличаются от характеристик обычных перфорированных стенок. Если последние имеют вид кривых, проходящих через начало координат и расположенных в 1-ом и 3-ем квадрантах (линия 6), то у предлагаемых клапанов значительная часть характеристики расположена либо во втором, либо в четвертом квадранте. Это говорит о том, что расход газа через клапан и перепад на нем имеют разные знаки. При ориентации клапана навстречу потоку (кривые 1 и 2) при нулевом перепаде на стенке (ΔP/ρu2=0) через стенку имеет место значительный положительный расход газа (V/U=0,015 для угла отклонения клапана 5° и V/U=0,03 для угла 10°). Нулевой расход газа через стенку (V/U=0) достигается в этом случае при значительном обратном перепаде давления (ΔР/ρu2=-0,15 и -0,22 соответственно).

При ориентации рабочей поверхности клапана в направлении по потоку при нулевом и даже положительном перепаде давления ΔP/ρu2≥0 газ втекает из камеры в поток со значительной отрицательной нормальной к стенке составляющей скорости. Так, при ΔP/ρu2=0 и угле наклона рабочей поверхности 5° вертикальная составляющая скорости равна - 0,005 (0,5%), при угле 10° - (-0,01) и при угле 15° - (0,018). Газ перестает эжектироваться из камеры давления в рабочую часть при положительных перепадах на стенке ΔP/ρu2=0,05; 0,08 и 0,13 соответственно при наклонах рабочей поверхности клапана 5°, 10° и 15°.

Данные фиг.5 показывают, что предлагаемые клапаны, площадь которых составляет менее 25% от полной площади изучаемого участка перфорации, легко позволяют получить требуемые вертикальные составляющие скорости V/U≈±1% при любых перепадах давления на стенке, в том числе ΔР/Р1≈±0,02 (фиг.4), как то необходимо из графика фиг.1. Для этого достаточно изменить угол наклона рабочей поверхности клапана к стенке трубы в диапазоне ±10°÷15°, а возможно, и значительно меньшем диапазоне (от+5° до -10°). Выступание клапана в поток при этом составляет 2÷4 мм и не превышает толщины пограничного слоя.

В целом эти эксперименты подтверждают реальность и работоспособность предлагаемых способа и устройства.

Физической основой предлагаемого процесса адаптации является использование энергии и скоростного напора основного течения в рабочей части аэродинамической трубы для управления его границами.


СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 502.
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f2

Способ определения угла атаки отрыва потока с гладких поверхностей моделей

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах, где требуется определение угла атаки начала отрыва потока и выявление зон отрыва потока с гладких поверхностей испытуемых моделей. В способе по одному из вариантов определения...
Тип: Изобретение
Номер охранного документа: 0002561783
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75f3

Способ измерения числа маха в аэродинамической трубе

Изобретение относится к измерительной технике, в частности может быть использовано в методиках измерений, предназначенных для аттестации аэродинамических труб и получения аэродинамических характеристик тестовых моделей в целях последующего их использования при аттестации алгоритмов и программ,...
Тип: Изобретение
Номер охранного документа: 0002561784
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75f5

Способ защиты полых изделий от превышения заданного уровня внутреннего избыточного давления газа

Изобретение относится к испытательной технике, в частности к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. Техническим результатом изобретения является многократное снижение конструктивных размеров...
Тип: Изобретение
Номер охранного документа: 0002561786
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7762

Способ определения герметичности при испытаниях на прочность

Изобретение относится к испытательной технике и может быть использовано для измерения степени герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например, фюзеляжей летательных аппаратов. В заявленном способе определения герметичности...
Тип: Изобретение
Номер охранного документа: 0002562151
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7764

Способ определения полей числовой концентрации дисперсной фазы в аэрозольном потоке и устройство для его реализации

Изобретение относится к области исследования многофазных потоков, в частности к технике определения параметров твердой, жидкой и газообразной фаз потока оптическими средствами, и может быть использовано для определения концентрации и массовой плотности дисперсной фазы в пространстве, а также...
Тип: Изобретение
Номер охранного документа: 0002562153
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7766

Устройство для определения герметичности при испытаниях на прочность

Изобретение относится к испытательной технике и может быть использовано для измерения герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например при испытаниях фюзеляжей летательных аппаратов. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002562155
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77df

Способ исследования состояния течения в пограничном слое

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно при исследованиях аэродинамического обтекания моделей в аэродинамических трубах. Пограничный слой на обтекаемых аэродинамических поверхностях может иметь ламинарное или турбулентное...
Тип: Изобретение
Номер охранного документа: 0002562276
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77e0

Блок-имитатор температурных полей

Изобретение относится к экспериментальной технике и может быть использовано для теплопрочностных статических испытаний конструкций летательных аппаратов, в частности к средствам, обеспечивающим воспроизведение нестационарных температурных полей в испытываемых конструкциях воздушно-космических...
Тип: Изобретение
Номер охранного документа: 0002562277
Дата охранного документа: 10.09.2015
Показаны записи 191-200 из 321.
20.07.2015
№216.013.626e

Устройство для повышения несущих свойств летательного аппарата

Изобретение относится к авиационной технике и может быть использовано на гражданских самолетах со стреловидным крылом, образованным по сверхкритическим профилям, и предкрылком в компоновке низкоплан при дозвуковой и околозвуковой скоростях полета. Устройство для повышения несущих свойств...
Тип: Изобретение
Номер охранного документа: 0002556745
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.693c

Оболочка отсека гермофюзеляжа из композиционных материалов

Изобретение относится к области авиационной техники и касается силовых авиационных конструкций из полимерных композиционных материалов, в частности к силовой конструкции отсека фюзеляжа гражданского самолета. Оболочка отсека гермофюзеляжа из композиционных материалов содержит жесткий сетчатый...
Тип: Изобретение
Номер охранного документа: 0002558493
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.693d

Система защиты силовых композитных элементов авиационных конструкций

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите. Система защиты силовых композитных элементов содержит внешнюю и внутреннюю обшивки, промежуточный слой защитного наполнителя....
Тип: Изобретение
Номер охранного документа: 0002558494
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.696a

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области авиации. Аэродинамический профиль несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями верхней и нижней частей...
Тип: Изобретение
Номер охранного документа: 0002558539
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be7

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области винтов винтокрылых летательных аппаратов. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между...
Тип: Изобретение
Номер охранного документа: 0002559181
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
+ добавить свой РИД