×
10.02.2013
216.012.23e2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТОЙ КОРКИ

Вид РИД

Изобретение

№ охранного документа
0002474688
Дата охранного документа
10.02.2013
Аннотация: Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал. Для определения акустических характеристик глинистой корки в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления. Из полученного сигнала определяют, по меньшей мере, одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида. 18 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к способам определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки.

Глинистая корка создается во время бурения буровым раствором, подаваемым в скважину по бурильной колонне и удаляемым через отверстия в буровом долоте с целью смазки бурового долота при бурении и для выноса обломков выбуренной породы на поверхность. Слой глинистой корки образуется по мере того, как буровой раствор смешивается с обломками горной породы и/или другими твердыми веществами и циркулирует вверх через кольцевую область между внешней поверхностью бурильной колонны и стенкой скважины. Смесь покрывает стенку скважины и образует слой глинистой корки. Одной из функций слоя глинистой корки является изолирование пласта от внутренней части скважины. Слой глинистой корки в отрасли часто называют глинистой коркой или фильтрационной коркой.

Известен способ прямого определения характеристик глинистой корки во время отбора проб, проводимого во время бурения, описанный в заявке WO 2009/139992. В известном способе используют низкочастотный акустический датчик в режиме прослушивания для оценки коэффициента диффузии давления глинистой корки κ, который непосредственно связан с герметизирующими характеристиками глинистой корки. В качестве устройства для создания гармонических или периодических колебаний давления использовался поршень камеры предварительных испытаний или любого другого устройства. Однако выработка колебаний давления не всегда возможна на практике.

Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал (например, единичный ступенчатый импульс давления).

Указанный технический результат достигается за счет того, что в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления, из полученного сигнала определяют по меньшей мере одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида.

Характеристиками переходного процесса являются показатель экспоненты переходной компоненты решения, момент времени, когда переходный компонент решения достигает своего максимума, и значение максимального давления, достигнутого во время переходного процесса.

В качестве неколеблющегося источника давления могут быть использованы как естественные источники, так и техногенные.

В качестве техногенных источников могут быть использованы низкочастотные акустические датчики/источники/трансдьюсеры, низкочастотная модуляция скважинного давления и т.п.

В качестве акустических датчиков для регистрации отклика давления могут быть использованы гидрофоны, трансдьюсеры, акселерометры, датчики давления и т.п.

Источник низкочастотных сигналов давления одновременно может быть акустическим датчиком.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на пакере.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на пробоотборнике.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на опорном башмаке.

Может быть использовано несколько источников, установленных в разных местах.

Толщину глинистой корки определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов.

Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

Изобретение поясняется чертежом, где на фиг.1 показано отношение давления со стороны датчика, установленного в глинистой корке, к амплитуде давления с другой стороны для различных значений проницаемости.

Для получения параметров формации и глинистой корки распространение импульса давления через них можно разделить. Учитывая, что длина волны рассеивания давления в глинистой корке λmc значительно меньше длины волны в пласте λƒor и что толщина глинистой корки hmc значительно меньше радиуса скважины Rb, описание распространения сигнала давления через глинистую корку можно сократить до простой одномерной задачи.

где κ - пьезопроводность (коэффициент диффузии давления), P - давление, х - линейная координата, перпендикулярная поверхности глинистой корки, k - проницаемость, с пограничными условиями

Решение задачи (1)-(2) таково:

Это означает, что в случае источника, вырабатывающего неколеблющийся сигнал давления, отклик датчика будет содержать только переходный процесс. Например, рассмотрим ступенчатую функцию источника:

Путем простых преобразований решения (3), (4) получаем выражение:

для t≤τ0

и

для t>τ0

Можно увидеть, что данное решение содержит только переходный процесс. Этого результата можно было ожидать, т.к. отсутствуют источники стимулирования наведенных колебаний. Эта ситуация рассмотрена в качестве примера на фиг.1, на которой составлены графики P/P0(t) для моделей с различными значениями проницаемости. В этом случае в качестве источника был выбран ступенчатый начальный импульс давления продолжительностью 10 с. Можно увидеть, что переходный процесс, его максимум и дальнейшее затухание являются в достаточной степени выраженными, и их можно использовать для оценки проницаемости глинистой корки. Возможность этого создается за счет анализа как роста начального давления, так и за счет длительного понижения давления. Оба этих процесса можно проанализировать, используя формулы (5), (6).

В общем случае для любого неколебательного импульса давления отклик давления будет содержать только переходный процесс. Этот процесс отличается несколькими характерными чертами, которые можно использовать для оценки пьезопроводности глинистой корки κ:

1) экспонент переходного компонента решения;

2) момент времени τmax, когда переходный компонент решения достигает своего максимума;

3) значение максимального давления, достигнутого во время переходного процесса.

Выделение характеристик из отклика датчика (переходный процесс) не представляет трудностей. Нахождение τmax и максимального давления представляется простым. Для извлечения описанных выше величин из сигнала, регистрируемого датчиком, мы предлагаем использовать идеи теории обработки и фильтрации сигналов и синхронизированных по фазе контуров для разделения переходных и колебательных процессов. Это объясняется тем, что частота вынужденных колебаний известна (частота источника), а спектральное содержание переходного компонента решения сконцентрировано вокруг намного более низких частот. Следовательно, для извлечения переходного компонента решения можно применить фильтр низких частот. Тогда найти τmax можно очень легко. Если выбрать затухающую часть переходного компонента (при t>τmax) и взять ее логарифм, можно найти интервал времени, когда наклон кривой становится постоянным. Это указывает на то, что достигнута фаза, характеризуемая присутствием только одного оставшегося экспонента. Начальная стадия этого процесса регистрируется датчиком, и ее можно проанализировать, используя формулы решения (5), (6). Если знать эти значения и использовать формулы, устанавливающие их соотношения с κ, можно легко оценить его значение (например, путем простых итераций или использования обычного решателя для нахождения корней функций).

Использование акселерометров в качестве датчиков позволяет охватить широкую и, в особенности, высокочастотную область низкочастотного спектра (1 Гц - десятки кГц); автономные датчики давления позволяют проводить измерения сигнала давления и могут использоваться, даже если непосредственный контакт с глинистой коркой/ формацией по какой-либо причине нежелателен или невозможен, либо в таких местах, как вход зонда и т.д.

Можно использовать один или несколько источников, а также один или несколько датчиков. Следует также отметить, что зачастую одно и то же устройство может действовать и как источник, и как датчик, и эти состояния можно либо комбинировать, либо переключать. Кроме того, в части мест расположения этих источников и/или датчиков имеется определенная гибкость. В число примеров среди прочего входят:

- пакер для инструмента;

- башмак пробоотборника;

- опорный башмак;

- источник(и) /датчик(и), установленные автономно;

- и т.д.

Широкий спектр вариантов имеет большое значение и дает многочисленные преимущества. Например, если установить источник(и)/ датчик(и) на пакере, это может помочь для установления хорошего контакта с глинистой коркой; если установить их на башмаке пробоотборника, можно надежно измерить отклик вблизи входа зонда, что позволяет избежать сильного затухания сигнала давления и т.д.; если установить их на опорный башмак, можно компенсировать шум и точно измерить компонент сигнала, связанного с диффузией давления через глинистую корку; автономная установка обеспечивает гибкость при измерениях и проектировании и т.д.

Низкочастотные измерения можно существенно усовершенствовать за счет применения нескольких датчиков. Их можно разместить в различных местах: башмаке пробоотборника, опорном башмаке и т.д. Это может обеспечить снижение или устранение шума, а также возможность измерения пьезопроводности. Это может увеличить соотношение «сигнал-шум», снизить требования в части динамического диапазона и чувствительности, способствовать снижению возможных воздействий геометрии измерения и т.д.

Для оценки коэффициента диффузии давления глинистой корки κ предлагается использовать сигналы, регистрируемые низкочастотным акустическим датчиком.

Толщину глинистой корки hmc предварительно определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов (см., например, WO 2009/139992). Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

Подвижность флюида η в глинистой корке определяют как

η=κϕ/K

Пористость глинистой корки ϕ оценивается как 10-30%.


СПОСОБ ОПРЕДЕЛЕНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТОЙ КОРКИ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 112.
09.05.2019
№219.017.4d21

Способ повышения нефтеотдачи пласта

Изобретение относится к нефтяной промышленности и может быть использовано для повышения дебита скважин и интенсификации добычи нефти. Обеспечивает повышение эффективности способа за счет воздействия на жидкость в поровом пространстве скважины многочастотным воздействием. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002355878
Дата охранного документа: 20.05.2009
09.05.2019
№219.017.4e9d

Устройство для определения характеристик образцов горных пород

Изобретение относится к области горного дела, добыче полезных ископаемых, в частности к устройствам для определения характеристик образцов горных пород. Техническим результатом изобретения является возможность получения гомогенизированной смеси жидкостей. Для этого устройство для определения...
Тип: Изобретение
Номер охранного документа: 0002421706
Дата охранного документа: 20.06.2011
09.05.2019
№219.017.5057

Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала

Использование: для определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала. Сущность: заключается в том, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль...
Тип: Изобретение
Номер охранного документа: 0002467316
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.536f

Укрепленные проппантные кластеры для гидроразрыва пласта

Изобретение относится к способам гидроразрыва пластов для повышения объемов добычи из них. Способ разрыва подземного пласта содержит закачку несущей жидкости в пласт под давлением, достаточным для создания трещины в пласте, закачку несущей жидкости и частиц проппанта и гранул укрепляющей...
Тип: Изобретение
Номер охранного документа: 0002687722
Дата охранного документа: 15.05.2019
18.05.2019
№219.017.56da

Способ и сенсор для мониторинга газа в окружающей среде скважины

Изобретение относится к способу и сенсору для мониторинга газа в окружающей среде скважины. Техническим результатом является повышение точности мониторинга газа. Для этого способ предусматривает в скважине инфракрасный светодиод. Указанный диод передает соответствующие инфракрасные сигналы на...
Тип: Изобретение
Номер охранного документа: 0002315865
Дата охранного документа: 27.01.2008
24.05.2019
№219.017.5e49

Способ планирования эксплуатационных и нагнетательных скважин

Изобретение относится к горному делу и может быть применено для гидроразрыва пласта. Способ включает этапы, на которых: осуществляют закачивание в ствол скважины текучей среды гидроразрыва, не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол...
Тип: Изобретение
Номер охранного документа: 0002688700
Дата охранного документа: 22.05.2019
09.06.2019
№219.017.7a5e

Способ определения текущей конденсатонасыщенности в призабойной зоне скважины в газоконденсатном пласте-коллекторе

Изобретение относится к разработке газоконденсатных месторождений и может быть использовано для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения текущего значения...
Тип: Изобретение
Номер охранного документа: 0002386027
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7a89

Способ определения текущей газонасыщенности в призабойной зоне скважины в залежи летучей нефти

Изобретение относится к разработке залежей летучей нефти и может быть использовано для определения текущей газонасыщенности в призабойной зоне добывающей скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения значения газонасыщенности в...
Тип: Изобретение
Номер охранного документа: 0002385413
Дата охранного документа: 27.03.2010
09.06.2019
№219.017.7f46

Комплексный прибор для исследования скважин

Изобретение относится к области геофизики и предназначено для проведения комплекса геофизических исследований нефтяных и газовых скважин, эксплуатируемых горизонтальным стволом. Техническим результатом является повышение информативности исследований, эффективности работы устройства, расширение...
Тип: Изобретение
Номер охранного документа: 0002442891
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
Показаны записи 71-78 из 78.
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
29.06.2018
№218.016.6910

Способ определения характеристик потока жидкости в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и предназначено, в частности, для определения характеристик потока жидкости в скважине. Технический результат - обеспечение возможности измерений характеристик потока жидкости в течение долгого времени с...
Тип: Изобретение
Номер охранного документа: 0002659106
Дата охранного документа: 28.06.2018
+ добавить свой РИД