×
27.01.2013
216.012.20c9

Результат интеллектуальной деятельности: УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ПЛОТНОСТИ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ ДЕТАЛЕЙ ИЗ ВЫСОКОНАПОЛНЕННЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ОКТОГЕНА

Вид РИД

Изобретение

Аннотация: Использование: для ультразвукового контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена. Сущность: заключается в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют время их распространения, повторно возбуждают ультразвуковые волны в этой же зоне в процессе эксплуатации, измеряют время их распространения, определяют относительное изменение времени распространения δt и рассчитывают плотность ρ исследуемой детали по следующему уравнению: ρ=ρ·[1+(a·δt+b)], где а и b - эмпирические коэффициенты. Технический результат: повышение точности определения плотности деталей из высоконаполненных композитных материалов на основе октогена и обеспечение возможности в любой заданный период эксплуатации проведения контроля деталей различного размера и конфигурации при одностороннем доступе, а также через слои других материалов с применением типовых промышленных приборов, в том числе в полевых условиях.
Основные результаты: Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена, заключающийся в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют время их распространения, повторно возбуждают ультразвуковые волны в этой же зоне в процессе эксплуатации, измеряют время их распространения, определяют относительное изменение времени распространения δt и рассчитывают плотность ρ исследуемой детали по следующему уравнению: ρ=ρ·[1+(a·δt+b)], где а и b - эмпирические коэффициенты.

Изобретение относится к области диагностики неразрушающими методами деталей и конструкций и может быть использовано для прецизионного определения плотности в процессе эксплуатации изделий, составной частью которых являются контролируемые детали из высоконаполненных композитных материалов на основе октогена, в горно-рудной и военной промышленности, а также в строительной индустрии.

Жестким требованиям точности определения плотности деталей из высоконаполненных композитных материалов на основе октогена удовлетворяет лабораторный метод гидростатического взвешивания («Взрывчатые вещества». Учебное издание. ФГУП «РФЯЦ-ВНИИЭФ». г.Саров, 2007, том 2, стр.345), погрешность которого зависит от массы детали и не превышает 0,25-0,30%.

Известен способ определения плотности деталей из высоконаполненных композитных материалов, основанный на измерении ослабления потока γ-квантов, прошедшего через контролируемую зону детали с известной средней толщиной («Взрывчатые вещества». Учебное издание. ФГУП «РФЯЦ-ВНИИЭФ». г.Саров, 2007, том 2, стр.262). Высокая точность этого способа, сопоставимая с методом гидростатического взвешивания, проистекает из жесткой зависимости между плотностью материала и ослаблением потока γ-квантов. Однако этот метод обладает рядом существенных недостатков:

- высокая трудоемкость и длительность испытаний;

- сложность методики и используемого оборудования;

- повышенная опасность и экологические проблемы, связанные с применением радиоактивных источников;

- невозможность проведения испытания при одностороннем доступе к детали.

Более простыми являются ультразвуковые методы определения плотности.

Плотность композитных материалов определяется в основном физическими характеристиками входящих в материал компонентов, их соотношением по объему или массе, структурой армирования, пористостью, степенью отверждения (полимеризации) матрицы. Этими факторами определяется и основная акустическая характеристика материала - скорость распространения ультразвуковых волн, называемая параметром неразрушающего контроля, т.к. этот параметр может быть определен в процессе контроля свойств детали.

Однако связь между скоростью ультразвука и физическими характеристиками материала, в частности плотностью, не является однопараметрической, поэтому плотность контролируемых деталей определяют по предварительно установленной корреляционной (статистической) зависимости от параметра неразрушающего контроля, причем оценка плотности по этим зависимостям, как правило, недостаточно надежна. Низкое значение коэффициента корреляции (r) связи плотность - скорость ультразвука для подавляющего большинства материалов ограничивает применение ультразвукового метода в практике контроля плотности композитов.

Например, метод определения плотности по скорости распространения продольных колебаний в трех направлениях, включенный в ОСТ 5.9102-72 «Стеклопластики полиэфирные. Контроль качества материала судовых конструкций без их разрушения», дает погрешность оценки плотности порядка 5%.

Широкое распространение при контроле металлов нашел способ определения структуры, упругих свойств или состава материалов по изменению величины поглощения ультразвуковых волн либо по изменению скорости их распространения в исследуемом теле (а.с. СССР 77708, опубл. 30.11.49).

Предложенный А.К. Бровцыным и Г.С.Чернышевой способ определения влажности и плотности глин (журнал «Дефектоскопия», 1999 год, №10, стр.56) позволяет определять указанные параметры на основании закономерностей распространения ультразвуковых волн.

Основным недостатком указанных способов является низкая точность измерений (единицы процентов).

Известен также способ определения плотности древесных материалов (А.С. №678391, М. Кл.2 G01N 9/00, опубл. 05.08.79, Бюл. №29) с высоким коэффициентом корреляции r=0,97, в котором определяются скорости распространения ультразвуковых волн в направлениях трех координатных осей, а плотность определяется по формуле:

ρ=0,23·(Va+Vt+Vr)/3+2,

где ρ - плотность материала;

Va - скорость распространения волны по оси ординат;

Vt - скорость распространения волны по оси абсцисс;

Vr - скорость распространения волны по оси апликат.

Но и этот способ имеет погрешность на уровне 3% и, кроме того, при его реализации нужен доступ к детали с трех сторон.

Задача, на решение которой направлено заявляемое изобретение, заключается в создании простого в реализации высокоточного способа контроля плотности деталей из высоконаполненных композитных материалов на основе октогена в процессе эксплуатации.

Технические результаты, достигаемые при осуществлении заявляемого изобретения, заключаются в повышении точности определения плотности деталей из высоконаполненных композитных материалов на основе октогена и обеспечении возможности в любой заданный период эксплуатации проведения контроля деталей различного размера и конфигурации при одностороннем доступе, а также через слои других материалов с применением типовых промышленных приборов, в том числе в полевых условиях.

Это достигается тем, что в ультразвуковом способе контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ0, измеряют время их распространения, повторно возбуждают ультразвуковые волны в этой же зоне в процессе эксплуатации, измеряют время их распространения, определяют относительное изменение времени распространения δt и рассчитывают плотность ρ исследуемой детали по следующему уравнению:

ρ=ρ0·[1+(a·δt+b)],

где а и b - эмпирические коэффициенты.

Сущность заявляемого способа основана на определении плотности деталей из высоконаполненных композитов на основе октогена с помощью установленной корреляционной связи между относительным изменением плотности - δρ=(ρ-ρ0)/ρ0 и относительным изменением времени распространения ультразвуковых волн - δt=(t-t0)/t0:

δρ=a·δt+b.

Подставляя эту зависимость в выражение

ρ=ρ0·(1+δρ),

получаем искомое уравнение:

ρ=ρ0·[1+(a·δt+b)].

Для установления корреляционной связи (δρ=a·δt+b) при контроле деталей после различных сроков и температур выдержки, имитирующих возможные воздействия в процессе эксплуатации, была проведена совместная обработка результатов определения изменения плотности деталей с помощью гидростатического метода и результатов определения изменения времени прохождения ультразвуковых волн с помощью дефектоскопа А 1214 с последующим расчетом относительных величин δρ и δt. В результате было получено следующее корреляционное уравнение:

δρ=-0,0495·δt-0,0003 (коэффициент корреляции r~0,94).

Проверка корреляционного уравнения проведена путем расчета плотности для выборки деталей из того же материала, в том числе и других типоразмеров, выдержанных в аналогичных условиях, по уравнению:

ρ=ρ0·[1+(-0,0495·δt-0,0003)].

Погрешность определения значений искомой плотности, рассчитанной для выборки контрольных деталей по данному уравнению, не превысила ±0,3%.

Ввиду малости величины коэффициента b в некоторых случаях им можно пренебречь.

Заявляемый способ реализуется следующим образом:

- в заданной зоне исследуемой детали с известной начальной плотностью ρ0, определенной ранее, например, гидростатическим способом, возбуждают ультразвуковые волны частотой 1,2÷2,5 МГц и измеряют время их распространения t0;

- в процессе эксплуатации, например при проведении регламентных работ, повторно возбуждают ультразвуковые волны в этой же зоне детали и измеряют время их распространения t;

- определяют относительное изменение времени распространения ультразвуковых волн - δt=(t-t0)/t0;

- рассчитывают плотность ρ исследуемой детали по следующему уравнению:

ρ=ρ0·[1+(-0,0495·δt-0,0003)].

Возбуждение ультразвуковых волн и измерение времени их распространения осуществляют с помощью промышленного дефектоскопа, например А 1214.

Реализация заявляемого способа показала достижение высокой точности, быстроты и простоты определения плотности деталей из композитного материала на основе октогена в процессе эксплуатации, который может быть использован непосредственно в конструкциях без их разборки и разрушения, что приводит в конечном счете к повышению надежности изделий, в состав которых входят контролируемые детали.

Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена, заключающийся в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют время их распространения, повторно возбуждают ультразвуковые волны в этой же зоне в процессе эксплуатации, измеряют время их распространения, определяют относительное изменение времени распространения δt и рассчитывают плотность ρ исследуемой детали по следующему уравнению: ρ=ρ·[1+(a·δt+b)], где а и b - эмпирические коэффициенты.
Источник поступления информации: Роспатент

Показаны записи 471-480 из 663.
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c7c

Термоядерный реактор

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических...
Тип: Изобретение
Номер охранного документа: 0002640407
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3f3d

Способ управления объектами путем скрытого идентифицирующего подобия

Изобретение относится к области идентификации технических средств путем использования их уникальных индивидуальных параметров. Технический результат заключается в обеспечении достоверного управления техническими объектами и формирования уникального идентифицирующего признака, присущего только...
Тип: Изобретение
Номер охранного документа: 0002648623
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.442c

Модуль бланкета гибридного термоядерного реактора

Изобретение относится к области термоядерной техники, в частности к бланкетам гибридных термоядерных реакторов. Модуль бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем содержит тепловыделяющие сборки с тепловыделяющими элементами. Топливо тепловыделяющих элементов...
Тип: Изобретение
Номер охранного документа: 0002649854
Дата охранного документа: 05.04.2018
29.05.2018
№218.016.5623

Система управления электронной плотностью плазмы на установках типа токамак

Изобретение относится к средствам проведения исследований в области управляемого термоядерного синтеза на установках типа токамак. Система управления электронной плотностью плазмы состоит из СВЧ интерферометра, с опорным каналом и основным каналом, проходящим через камеру токамака, на одном...
Тип: Изобретение
Номер охранного документа: 0002654518
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5644

Бесчехловая регулирующая тепловыделяющая сборка жидкометаллического ядерного реактора

Изобретение относится к области ядерной техники и может быть применено в бесчехловых регулирующих тепловыделяющих сборках жидкометаллического ядерного реактора. Бесчехловая тепловыделяющая сборка жидкометаллического ядерного реактора содержит тепловыделяющие элементы, установленные в...
Тип: Изобретение
Номер охранного документа: 0002654530
Дата охранного документа: 21.05.2018
Показаны записи 471-480 из 487.
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c7c

Термоядерный реактор

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических...
Тип: Изобретение
Номер охранного документа: 0002640407
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
18.05.2019
№219.017.5728

Смесевое взрывчатое вещество

Изобретение относится к взрывчатым веществам (ВВ). Предложено смесевое ВВ для сварки взрывом, содержащее порошкообразный ТЭН или октоген, или гексоген (30-70 об.%) и наполнитель в виде бикарбоната натрия (остальное). Изобретение обеспечивает качественную сварку взрывом тонколистовых изделий или...
Тип: Изобретение
Номер охранного документа: 0002384551
Дата охранного документа: 20.03.2010
18.05.2019
№219.017.5732

Взрывное устройство для динамического нагружения

Изобретение относится к исследованиям поведения веществ при динамическом воздействии на них и может быть использовано в любой области техники. Взрывное устройство для динамического нагружения содержит основной заряд взрывчатого вещества, который выполнен многослойным, ударник и узел...
Тип: Изобретение
Номер охранного документа: 0002383880
Дата охранного документа: 10.03.2010
18.05.2019
№219.017.5907

Смесевое взрывчатое вещество и способ его изготовления

Изобретение относится к области разработки смесевых взрывчатых веществ (ВВ), а именно мощных бризантных ВВ с повышенными удельными характеристиками кумулятивных зарядов различного назначения, например используемых в газонефтедобыче. Предложенный состав смесевого высокобризантного ВВ включает...
Тип: Изобретение
Номер охранного документа: 0002417971
Дата охранного документа: 10.05.2011
29.05.2019
№219.017.65fd

Взрывной пьезогенератор

Пьезогенератор предназначен для использования в сильноточной импульсной технике в качестве исполнительного механизма в системах однократного действия. Пьезогенератор содержит устройство инициирования, генератор ударной волны в виде монолитного тела с зарядом в виде слоя взрывчатого вещества и...
Тип: Изобретение
Номер охранного документа: 0002313891
Дата охранного документа: 27.12.2007
+ добавить свой РИД