×
27.01.2013
216.012.20be

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройству для определения, контроля и измерения физических параметров веществ и предназначено для бесконтактного фотометрического определения характеристик металлических расплавов, в частности кинематической вязкости и электропроводности. Устройство содержит тигель с исследуемым образцом, коаксиально подвешенный в зоне нагрева вакуумной электропечи на закручиваемой электромагнитным узлом упругой нити, с закрепленным на этой нити зеркалом. Также устройство включает источник света, компьютер и фотоприемное устройство, состоящее из полупрозрачной измерительной линейки и двух фотосенсоров, выходная шина которых соединена с одним из портов управляющего компьютера. В устройство введены по меньшей мере две дополнительные пары фотосенсоров, причем расстояние между парами фотосенсоров одинаковое и в 5-20 раз превышает межцентровое расстояние фотосенсоров внутри пары. Достигаемый при этом технический результат заключается в обеспечении точности, стабильности и непрерывности хода экспериментов, сокращении времени экспериментов, уменьшении угара компонентов расплава, устранении субъективного влияния на эксперимент, а также снижении квалификационных требований к экспериментатору. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технической физике, а именно к устройствам для определения, контроля и измерения физических параметров веществ, и предназначено для бесконтактного измерения нескольких параметров, в частности кинематической вязкости и электропроводности высокотемпературных металлических расплавов, выполненных, например, на основе железа, путем фотометрической регистрации колебательной траектории отраженного светового луча и последующего определения параметров затухания крутильных колебаний цилиндрического тигля с расплавом. Дополнительной сферой применения являются металлургические процессы и обучающие процедуры.

Измерение физико-химических параметров металлических жидкостей, прежде всего определение вязкости и электропроводности высокотемпературных расплавов, в объеме нескольких кубических см, позволяет проводить прогностический анализ материалов и давать рекомендации для получения сплавов с заданными характеристиками. В частности, политермы (термозависимости) кинематической вязкости и электропроводности позволяют выделять характерные критические температурные точки и гистерезисные характеристики цикла «нагрева - охлаждения». Для высокотемпературных исследований металлических расплавов с температурой плавления выше 1000°C лишь немногие устройства для измерения кинематической вязкости и электропроводности могут быть использованы на практике. К ним относятся устройства для осуществления бесконтактного фотометрического способа определения кинематической вязкости и определения электропроводности методом вращающегося магнитного поля, которые регистрируют параметры траектории отраженного от зеркала светового луча, а в конечном итоге амплитудно-временные параметры процесса свободного затухания крутильных колебаний цилиндрического тигля с расплавом, подвешенного на упругой нити, происходящих после выключения процесса закручивания этой нити на определенный угол φ в одном из направлений, осуществляемого посредством включения электромагнитного поля (см. Г.В.Тягунов и др. «Измерение удельного электросопротивления методом вращающегося магнитного поля», журн. «Заводская лаборатория. Диагностика материалов», М., 2003, №2, том 69, 35-37). Такая многократно повторенная за один эксперимент, в каждой температурной точке, процедура - закручивание в произвольном направлении, посредством электромагнитного узла, из состояния покоя тигля с расплавом, подвешенного на упругой нити, - отключение этого узла - измерение параметров свободных крутильных колебаний с затуханием - повторное закручивание - является типовым режимом измерений.

Известно устройство - вискозиметр Шенка, основными узлами которого являются тигель с расплавом, подвешенный на упругой стальной нити - подвесе, печь с нейтральной атмосферой и молибденовым нагревателем, зеркало, укрепленное на вращающемся узле, лампа - осветитель, расположенная на некотором расстоянии от печи, шкала в виде оптической линейки, по которой движется отраженный от зеркала световой луч - «зайчик», произвольно коммутируемый в одном из направлений закручивания исследователем, электромагнит для закручивания упругой нити (см. С.И.Филиппов и др. «Физико-химические методы исследования металлургических процессов», М., Металлургия, 1968, с.254-255, рис.107 - аналог).

Недостатком устройства является отсутствие возможности осуществления автоматизации процесса измерений и необходимость постоянного наблюдения экспериментатором за колебаниями светового «зайчика» на шкале оптической линейки и отсчета амплитуды колебаний по этой шкале. В конечном итоге, это усложняет процедуру измерений, не обеспечивает дальнейшего повышения точности, вносит элемент субъективности в полученные результаты и требует наличия у экспериментатора высокой квалификации.

Прототипом изобретения является устройство для бесконтактного измерения вязкости металлических расплавов путем регистрации параметров колебательной траектории отраженного светового луча, содержащее тигель с исследуемым образцом, коаксиально подвешенный в зоне нагрева вакуумной электропечи на закручиваемой электромагнитным узлом упругой нити, с закрепленным на этой нити зеркалом, источник света, компьютер, фотоприемное устройство, содержащее контрольную измерительную шкалу - линейку и два фотосенсора, расположенных посреди нее, выходная шина фотоприемного устройства соединена с одним из портов управляющего компьютера (см. пат. РФ №2366925).

Недостатком устройства является то, что при определении электропроводности расплава методом вращающегося магнитного поля колебания траектории светового луча относительно невелики по амплитуде, при этом конечное отклонение угла φ поворота тигля с расплавом, наблюдаемое в виде установившегося значения, может выйти из зоны действия обоих фотосенсоров фотоприемного устройства, несмотря на то, что траектория светового луча будет наблюдаема экспериментатором на шкале - линейке в области, близкой к краю контрольной измерительной шкалы - линейки. При этом становится невозможно осуществить автоматическое функционирование и управление устройством посредством использования компьютера, поскольку исчезают сигналы фотосенсоров. Это усложняет процедуру измерений, не обеспечивает повышения точности, вносит элемент субъективности в полученные результаты и требует наличия у экспериментатора высокой квалификации. Приходится осуществлять ручное управление устройством высококвалифицированным персоналом, вследствие чего отсутствует непрерывность эксперимента, возрастает время реагирования и снижается стабильность хода эксперимента, появляется угар компонентов расплава. Это ограничивает возможность использования устройства при определении параметров расплава и накладывает высокие квалификационные требования к обслуживающему персоналу.

Задачей предлагаемого устройства для бесконтактного фотометрического определения характеристик металлических расплавов является обеспечение точности, стабильности и непрерывности хода экспериментов, сокращение времени экспериментов, уменьшение угара компонентов расплава, устранение субъективного влияния на эксперимент, снижение квалификационных требований к экспериментатору.

Для решения поставленной задачи предлагается устройство для бесконтактного фотометрического определения характеристик металлических расплавов.

В устройство для бесконтактного фотометрического определения характеристик металлических расплавов, содержащее тигель с исследуемым образцом, коаксиально подвешенный в зоне нагрева вакуумной электропечи на закручиваемой электромагнитным узлом упругой нити, с закрепленным на этой нити зеркалом, источник света, компьютер, фотоприемное устройство, состоящее из полупрозрачной измерительной линейки и двух фотосенсоров, выходная шина которых соединена с одним из портов управляющего компьютера, введены по меньшей мере две дополнительные пары фотосенсоров, причем расстояние между парами фотосенсоров одинаковое и в 5-20 раз превышает межцентровое расстояние фотосенсоров внутри пары.

Кроме того, фотосенсоры центральной пары расположены симметрично относительно центра полупрозрачной измерительной линейки, а дополнительные пары фотосенсоров расположены симметрично относительно центра полупрозрачной измерительной линейки.

Отличительные признаки предложенного изобретения обеспечивают точность, стабильность и непрерывность хода экспериментов, сокращение времени экспериментов, уменьшение угара компонентов расплава, устранение субъективного влияния на эксперимент, снижение квалификационных требований к экспериментатору.

Предлагаемое изобретение поясняется чертежами:

фиг.1 - блок-схема измерительного комплекса;

фиг.2 - осциллограмма траектории отраженного светового луча, отражающая угол закручивания подвески с образцом;

фиг.3 - алгоритм определения номера М (1≤М≤n) пары фотосенсоров.

Устройство для бесконтактного фотометрического определения характеристик металлических расплавов содержит вакуумную печь 1, в высокотемпературной зоне нагрева которой на упругой нити 2 коаксиально подвешен тигель 3 с размещенным в нем исследуемым образцом, соединенный с упругой нитью 2 с помощью керамического стержня 4. Вне высокотемпературной зоны нагрева печи 1 расположен электромагнитный узел 5, предназначенный для закручивания упругой нити 2. Высокотемпературную зону создает коаксиальный цилиндрический нагреватель 6, питающийся от трехфазной силовой сети (на фиг.1 не показано). На верхнем конце керамического стержня 4 жестко зафиксирован магнитный элемент 7, выполненный в виде диска. Источник 8 электромагнитного поля (катушки) совместно с магнитным элементом 7 являются составными частями электромагнитного узла 5. Зеркало 9 закреплено на верхнем конце керамического стержня 4. Его освещает источник света 10. Контрольная измерительная шкала - линейка 11, а также собственно фотоприемное устройства 12, содержащее оптически изолированные друг от друга фотодиодные интегральные схемы (фотосенсоры) 13, образуют единый блок. Управляющий компьютер 14, соединенный с измерительным комплексом, например, через LPT или USB-порт и производящий, в том числе, обработку результатов экспериментов, соединен с фотоприемным устройством 12.

В качестве упругой части подвески 2 используют нихромовую нить длиной 650 и диаметром 0,15 мм. Объем исследуемого металлического расплава в тигле 3 составляет около 2-8 см. куб. Масса магнитного элемента 7, выполненного из ферромагнетика в виде диска, меньше или равна массе тигля 3 с размещенным в нем образцом. Магнитная система электромагнитного узла 5 - источника 8 магнитного поля выполнена в виде статора однофазного электродвигателя постоянного тока с потребляемой мощностью примерно 70 мВт. Магнитную систему (на схеме не показано), которую используют для создания постоянного вращающегося магнитного поля и представляющую собой статор 3-фазного асинхронного электродвигателя, помещенный в области нагрева тигля 3 снаружи корпуса электропечи 1, включают при определении электропроводности. Коаксиальный цилиндрический нагреватель 6, выполненный из молибдена и обеспечивающий изотермическую зону, включен постоянно в течение всего эксперимента. Зеркало 9 имеет площадь 1 см кв., свет попадает на него от постоянно включенного источника света 10, например сверхъяркого светодиода L7113SEC-H фирмы Kingbright (см. каталог Kingbright, 2005-2006) или лампы накаливания, например автомобильной на 12 В, через окно - иллюминатор (на схеме не показано) и отражается на полупрозрачную контрольную оптическую шкалу - линейку 11 с ценой деления 1 мм и размером 500 мм (с нулем шкалы посередине). На линейке 11 зафиксировано собственно фотоприемное устройство 12, содержащее оптически изолированные фотодиодные интегральные схемы (фотосенсоры) 13, например, в виде интегральных микросхем - фотосенсоров TSL250 фирмы TAOS (см. каталог ELFA - 55, 2007, р.812, 11). В центре линейки 11 симметрично нулевой отметке шкалы находится центральная пара фотосенсоров 13, остальные пары фотосенсоров 13 расположены на линейке 11 симметрично центральной паре фотосенсоров 13 на расстоянии друг от друга в 5-20 раз больше, чем межцентровое расстояние (L=5-6 мм) внутри пары фотосенсоров 13. В качестве управляющего компьютера 14 используется персональный компьютер уровня Pentium 3.

Фотометрическое измерение вязкости металлических расплавов осуществляется следующим образом. Подготавливается изучаемый образец, у которого определяется масса, затем он в тигле 3 подвешивается в вакуумную печь 1 в район высокотемпературной изотермической зоны, включается источник света 10, отраженный от зеркала 9 световой луч устанавливается котировочным механизмом на середину оптической шкалы 11. Затем создается вакуум до 0,01 Па, включают коаксиальный цилиндрический нагреватель 6 для нагрева изотермической зоны до температуры, при которой начинают процесс измерений. Например, при исследовании авторами чугуна, легированного никелем, редкоземельными металлами, марганцем и др. (С - 3%, Si - 2%, Mn - 2%, Ni - 15%, Cu - 6%), проходит около 2,5 часов для достижения одной из требуемых по целям эксперимента температуры +1270°C. После нагрева до нужной температуры исследователь включает электромагнитный узел 5, который начинает закручивать упругую нить 2. После этого примерно через 50 мс - 2 с (в момент времени t1, на фиг.1 не показано) движущийся отраженный световой луч попадает на один из n-парных фотосенсоров 13 фотоприемного устройства 12, на выходе фотоприемного устройства 12 появляется соответствующий сигнал U1, который через выходную шину фотоприемного устройства 12 вводится в компьютер 14, например, в один из портов. Сигнал является стартовым для управляющего компьютера 14, который начинает, в соответствии с алгоритмом, процесс управления измерительным комплексом, в том числе и коммутацией электромагнитного узла 5. Сигналы U1, U2 оптосенсоров 13, расположенных посреди контрольной измерительной шкалы - линейки 11, по которой экспериментатор осуществляет визуальный контроль эксперимента, появляются последовательно, в момент засветки каждого оптосенсора 13 отраженным световым лучом. Траектория луча при этом находится в наиболее линейной (околонулевой) области. Динамика прохождения отраженным световым лучом оптосенсоров 13 (t1, t2) и появление на управляющем компьютере 14 (на одном из его портов) сигналов оптосенсоров 13 U1, U2 обеспечивает появление на выходе управляющего компьютера 14 сигнала (импульса), который управляет динамикой закручивания упругой нити 2 и тигля 3 с размещенным в нем исследуемым образцом.

В случае определения электропроводности образца расплава вместо электромагнитного узла 5 включают источник постоянного вращающегося магнитного поля, которое закручивает упругую нить 2 и тигель 3 с размещенным в нем исследуемым образцом на угол φ, пропорциональный электропроводности расплава. Процедура измерения практически аналогична измерению кинематической вязкости. Временная динамика траектории отраженного светового луча, в том числе положение экстремальных точек и установившегося угла φ, проиллюстрированы на фиг.2.

В случае небольших, по сравнению с измерениями при кинематической вязкости, колебательных амплитуд отраженного светового луча, а также поворота на угол φ, величина которого может достигать одного или другого конца полупрозрачной контрольной оптической шкалы - линейки 11, освещаются другие не центральные фотосенсоры 13. Сигналы U1, U2 от них, аналогично вышеописанной процедуре для центральной пары фотосенсоров 13, через выходную шину фотоприемного устройства 12 вводятся в компьютер 14. Компьютер 14, в соответствии с алгоритмом, приведенным на фиг.3, определяет номер n засвеченной пары фотосенсоров 13 и начинает вычисление значений углов φ закручивания упругой нити 2 и тигля 3 с размещенным в нем исследуемым образцом.

Алгоритм определения номера М (1≤М≤n) пары фотосенсоров, оптимального для дальнейших измерений, который приведен на фиг.3, описывает один из вариантов, при котором направление возрастания номера фотосенсоров внутри пары от первого ко второму совпадает с направлением возрастания номера пары от 1 до n, например, слева направо.

Технический результат достигается тем, что устройство для бесконтактного фотометрического определения характеристик металлических расплавов обеспечивает точность, стабильность и непрерывность хода экспериментов, сокращение времени экспериментов, уменьшение угара компонентов расплава, устранение субъективного влияния на эксперимент, снижение квалификационных требований к экспериментатору.


УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
27.08.2015
№216.013.742a

Способ и устройство определения поверхностного натяжения и/или плотности металлических расплавов

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических расплавов методом геометрии контура «большой лежащей капли», т.е. путем измерения плотности и поверхностного натяжения неподвижно лежащей на подложке эллипсовидной капли образца...
Тип: Изобретение
Номер охранного документа: 0002561313
Дата охранного документа: 27.08.2015
20.09.2015
№216.013.7bfc

Способ и устройство для контроля работы нагревателя электропечи

Изобретение относится к технической физике, а именно к способам и устройствам контроля физических параметров: вязкости, электропроводности, плотности, поверхностного натяжения у образцов металлических расплавов. Оно может быть использовано на металлургических предприятиях, в исследовательских...
Тип: Изобретение
Номер охранного документа: 0002563337
Дата охранного документа: 20.09.2015
10.12.2015
№216.013.96da

Способ и устройство изучения плотности и/или поверхностного натяжения образца металлического сплава

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т. е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии....
Тип: Изобретение
Номер охранного документа: 0002570238
Дата охранного документа: 10.12.2015
20.04.2016
№216.015.3341

Способ и устройство определения плотности и/или поверхностного натяжения образца металлического сплава

Изобретение относится к технической физике, а именно к определению физико-химических параметров металлических сплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли образца сплава посредством фотометрической объемометрии....
Тип: Изобретение
Номер охранного документа: 0002582156
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c99

Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов

Использование: для определения свойств многокомпонентных сложнолегированных жаропрочных расплавов, основанного на изучении крутильных колебаний цилиндрического тигля с расплавом. Сущность изобретения заключается в том, что определяют температурные зависимости свойств образца расплава с...
Тип: Изобретение
Номер охранного документа: 0002583343
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.a13e

Установка для определения физических параметров высокотемпературного металлического расплава фотометрическим методом в вертикальной вакуумной электропечи

Изобретение относится к области физики и металлургии, а именно к устройствам, используемым в исследовательских и лабораторных работах для измерения физических параметров расплавов. Предлагаемая установка, содержащая подвесную систему в виде упругой нихромовой нити, на которой подвешены...
Тип: Изобретение
Номер охранного документа: 0002606678
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b260

Способ и устройство для определения плотности и поверхностного натяжения металлических расплавов

Изобретение относится к технической физике, а именно к определению физических параметров металлических расплавов методом геометрии «большой капли», а именно путем измерения геометрических характеристик силуэта лежащей на подложке эллипсовидной капли расплавленного образца посредством...
Тип: Изобретение
Номер охранного документа: 0002613592
Дата охранного документа: 17.03.2017
26.08.2017
№217.015.ea7f

Способ изучения бинарного бариево-литиевого сплава и устройство для его осуществления

Группа изобретений относится к технической физике применительно к изучению образцов двухкомпонентных металлических сплавов, а именно исследованиям термозависимостей физических свойств расплавов образцов химически активных сплавов. При осуществлении способа используют образцы шихты изучаемого...
Тип: Изобретение
Номер охранного документа: 0002628036
Дата охранного документа: 14.08.2017
19.01.2018
№218.016.00d7

Устройство для фотометрического определения удельного электросопротивления металлических расплавов

Изобретение относится к анализу материалов путем фотометрического определения удельного электросопротивления нагреваемого тела в зависимости от температуры, в частности к определению удельного электросопротивления металлов и сплавов в жидком состоянии. Устройство содержит компьютер, источник...
Тип: Изобретение
Номер охранного документа: 0002629699
Дата охранного документа: 31.08.2017
Показаны записи 131-140 из 157.
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.04f6

Кислотостойкая композиция для ремонта эмалевых покрытий

Изобретение относиться к средствам для ремонта повреждений и защиты от коррозии в месте повреждения стеклоэмалевых покрытий технологического оборудования химических предприятий, систем трубопроводов, другого оборудования технического назначения и может быть применено на предприятиях химической...
Тип: Изобретение
Номер охранного документа: 0002587678
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b7a

Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов...
Тип: Изобретение
Номер охранного документа: 0002579856
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c4c

Биобарабан для аэробной переработки сырья

Изобретение может быть использовано в биоэнергетике в качестве универсального аэробного реактора для переработки в удобрение навоза животных, помета птиц, зеленой массы, бытовых и других сельскохозяйственных и лесных отходов биосырья. Биобарабан содержит цилиндрический корпус на роликоопорах с...
Тип: Изобретение
Номер охранного документа: 0002579789
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d33

Способ продольной прокатки труб

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке труб в станах продольной прокатки. Способ включает прокатку гильзы-трубы в валках с калибрами, придание гильзе овальной формы непосредственно перед валками стана продольной прокатки труб. Повышение...
Тип: Изобретение
Номер охранного документа: 0002579857
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2df0

Способ для измерения перемещений (варианты)

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим. При этом формируют два дополнительных световых потока на...
Тип: Изобретение
Номер охранного документа: 0002579812
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e03

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002579766
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e4f

Система ускоренной аэробной переработки биомассы

Система относится к области биотехнологий в сельском и лесном хозяйствах и может быть использована для ускоренной ферментационной переработки отходов жизнедеятельности животных, населения и птиц, а также других видов биомассы. Система содержит устройство подготовки перерабатываемой жидкой...
Тип: Изобретение
Номер охранного документа: 0002579787
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e56

Способ бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий и устройство для его осуществления

Изобретение относится к технике неразрушающего контроля изделий, а именно к устройствам для бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий с использованием электромагнитного излучения СВЧ-диапазона, и может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002579644
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb1

Способ получения изделий типа стакан из немерных концов труб

Изобретение относится к области металлургии, а точнее к методам утилизации немерных концов труб, предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки. При этом немерные отрезки дополнительно нарезают на заготовки определенной длины....
Тип: Изобретение
Номер охранного документа: 0002580257
Дата охранного документа: 10.04.2016
+ добавить свой РИД