×
20.01.2013
216.012.1c71

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению содержащих динитрофенольный фрагмент 2-гидрокси-3,5-динитро-N-(салицилиден)-анилину или 2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилину, рассеивающих протонный градиент, создаваемый дыханием, и влияющих на окислительное фосфорилирование в митохондриях, взаимодействием 2-амино-4,6-динитро фенола и салицилового альдегида или п-диметиламино бензальдегида. 5 ил.
Основные результаты: Способ получения веществ, стимулирующих клеточное дыхание, содержащих динитрофенольный фрагмент, таких как 2-гидрокси-3,5-динитро-N-(салицилиден)-анилин или 2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилин, рассеивающих протонный градиент, создаваемый дыханием и влияющих на окислительное фосфорилирование в митохондриях, взаимодействием 2-амино-4,6-динитрофенола и салицилового альдегида или п-диметиламинобензальдегида.

Изобретение относится к области медицины, а также к биохимии и может быть использовано для получения биологически активных веществ, стимулирующих клеточное дыхание, в лабораторных и промышленных условиях.

Известен способ получения препарата, стимулирующего клеточное дыхание (патент №2066995, от 12.10.1993 г., кл. А61К 35/14). Сущность способа в том, что ферментативный гидролиз сыворотки крови телят проводят с использованием бактериальной эндопротеазы в определенных условиях до получения субстанции препарата гидролизатов.

Известны также азометины, обладающие рострегулирующей активностью (патент №2146251, №2146252 от 18.01.1999 г.). Производные 6-метил-1,2,4-триазинона-5 обладают положительной рострегулирующей активностью и могут быть рекомендованы в сельском хозяйстве для повышения урожая культур.

Задача - получение соединений, обладающих стимулирующим действием на клеточное дыхание.

Сущность способа в том, что получены различные азометины, содержащие динитрофенольный фрагмент, соединенный с различными радикалами, рассеивающие протонный градиент, создаваемый дыханием, и влияющие на окислительное фосфорилирование в митохондриях.

Получают азометины реакцией пикраминовой кислоты с ароматическими альдегидами. Азометины - обширный класс соединений, синтезировано их достаточное множество. Среди них найдено множество соединений, обладающих биологической активностью, много лекарственных препаратов. Основное применение они находят в органическом синтезе, главным образом для получения вторичных аминов и гетероциклических соединений.

Нами синтезированы азометины на основе ароматических аминов и замещенных бензальдегидов.

2-гидрокси-3,5-динитро-N-(салицилиден)-анилин нами получен реакцией 2-амино-4,6-динитрофенола (пикраминовой кислоты) с салициловым альдегидом. Реакция протекает в течение 2-х часов на водяной бане при 75°С

В ИК-спектре полученного соединения обнаружена интенсивная полоса в области 1610 см-1, принадлежащая валентным колебаниям азометиновой группы.

В результате аналогичной реакции между 2-амино-4,6-динитрофенолом и парадиметиламинобензальдегидом образуется 2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилин:

В ИК-спектре полученного азометина обнаружена интенсивная полоса в области 1610 см-1, принадлежащая азометиновой группе.

Полученные соединения представляют собой окрашенные в оранжевый цвет кристаллические вещества, растворимые в спирте, хлороформе, бензоле.

Таким образом, общим в структуре исследуемых соединений является наличие динитрофенольного фрагмента.

Динитрофенол является довольно сильной кислотой и, следовательно, способен к обратимому связыванию протонов:

В то же время этот фрагмент гидрофобен и поэтому способствует проникновению через биомембрану. Объединение этих двух свойств делает производные 2,4-динитрофенола (ДНФ) разобщителями окислительного фосфорилирования.

Присоединение радикала R к динитрофенольному фрагменту существенно не изменяет способности этого фрагмента к диссоциации, поэтому производные динитрофенола также способны к разобщению окислительного фосфолирования. Скорость дыхания в разобщенном состоянии определяется активностью переносчиков электронов электрон-транспортной цепи или активностью фермента, поставляющего восстановительные эквиваленты в электрон-транспортную цепь. В нашем случае это сукцинатдегидрогеназа, поскольку в качестве субстрата использовался сукцинат.

На рис.1 представлена кривая кинетики потребления кислорода гомогенатом печени крыс в полярографической ячейке с электродом Кларка в качестве регистрирующего датчика. По оси абсцисс откладывается величина тока восстановления кислорода на электроде Кларка, по оси ординат отложено время. Скорость потребления кислорода определяется по тангенсу угла наклона кривой к оси ординат (V=dc/dt, V - скорость потребления, с - концентрация кислорода в ячейке, t - время). В ячейку последовательно добавляют буфер, гомогенат печени крыс, субстракт окисления (сукцинат), вещество А (2-гидрокси-3,5-динитросалицилиденанилина).

На рис.2 представлена кривая кинетики потребления кислорода гомогенатом печени крыс в полярографической ячейке с электродом Кларка в качестве регистрирующего датчика. По оси абсцисс откладывается величина тока восстановления кислорода на электроде Кларка по оси ординат отложено время. Скорость потребления кислорода определяется по тангенсу угла наклона кривой к оси ординат (V=dc/dt, V - скорость потребления, с - концентрация кислорода в ячейке, t - время). В ячейку последовательно добавляют буфер, гомогенат печени крыс, субстракт окисления (сукцинат), вещество В (2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилина).

На рис.3 представлена кривая кинетики потребления кислорода гомогенатом печени крыс в полярографической ячейке с электродом Кларка в качестве регистрирующего датчика. По оси абсцисс откладывается величина тока восстановления кислорода на электроде Кларка, по оси ординат отложено время. Скорость потребления кислорода определяется по тангенсу угла наклона кривой к оси ординат (V=dc/dt, V - скорость потребления, с - концентрация кислорода в ячейке, t - время). В ячейку последовательно добавляют буфер, гомогенат печени крыс, субстракт окисления (сукцинат), вещество С (4-метокси-5-амино-6-тио-(2,4-динирофенил)-пиримидина).

На рис.4 представлена кривая кинетики потребления кислорода гомогенатом печени крыс в полярографической ячейке с электродом Кларка в качестве регистрирующего датчика. По оси абсцисс откладывается величина тока восстановления кислорода на электроде Кларка, по оси ординат отложено время. Скорость потребления кислорода определяется по тангенсу угла наклона кривой к оси ординат (V=dc/dt, V - скорость потребления, с - концентрация кислорода в ячейке, t - время). В ячейку последовательно добавляют буфер, гомогенат печени крыс, субстракт окисления (сукцинат), пикраминовую кислоту.

На рис.5 представлена кривая кинетики потребления кислорода гомогенатом печени крыс в полярографической ячейке с электродом Кларка в качестве регистрирующего датчика. По оси абсцисс откладывается величина тока восстановления кислорода на электроде Кларка, по оси ординат отложено время. Скорость потребления кислорода определяется по тангенсу угла наклона кривой к оси ординат (V=dc/dt, V - скорость потребления, с - концентрация кислорода в ячейке, t - время). В ячейку последовательно добавляют буфер, гомогенат печени крыс, субстракт окисления (сукцинат), АДФ (аденозиндифосфорную кислоту), разобщитель (ДНФ, 2,4-динитрофенол). Чем сильнее разобщитель, тем сильнее ускоряется потребление кислорода.

В качестве стандарта для сравнения разобщающих способностей использовался ДНФ, так как это наиболее широко используемый в молекулярной биоэнергетике разобщитель. Известно, что в концентрации 10-4 моль/л ДНФ практически полностью разобщает окисление с фосфорилированием, то есть синтез АТФ в присутствии ДНФ практически отсутствует, а скорость дыхания максимальна. Следует, однако, отметить, что при достаточно долгом разобщенном дыхании в определенных условиях окисление сукцината может приводить к накоплению в митохондриях щавелевоуксусной кислоты (ЩУК), которая в микромолярных концентрациях сильно ингибирует активность сукцинатдегидрогеназы, что может приводить к практически полному подавлению дыхания. Условия, при которых в митохондриях накапливается ЩУК, состоят в том, что скорость образования ЩУК должна превышать скорость ее утилизации, либо в результате переаминирования, либо конденсацией с ацетил-К0А и образованием лимонной кислоты. Чтобы исключить ЩУКовое торможение, в среду инкубации добавляли глутамат, который в реакции переаминирования с ЩУК дает аспартат и α-кетоглутарат, которые не являются ингибиторами сукцинатдегидрогеназы. ДНФ в концентрации 10-4 моль/л ускоряет дыхание на 50% по сравнению с начальной скоростью дыхания на сукцинате. Вещество А в той же концентрации увеличивает скорость на 103% и таким образом оно является лучшим стимулятором дыхания по сравнению с ДНФ. Если предположить, что ДНФ полностью разобщает дыхание с фосфорилированием, то увеличение скорости дыхания в присутствии вещества А по сравнению с ДНФ может быть обусловлено либо повышением активности переносчиков электрон-транспортной цепи, либо активацией сукцинатдегидрогеназы. Вещество А по сравнению с ДНФ обладает дополнительным объемным гидрофобным радикалом, что должно увеличивать его растворимость в липидах мембран. Поэтому можно предположить, что концентрация вещества А во внутренней мембране митохондрий будет выше, чем концентрация ДНФ. Это, с одной стороны, может ускорить транспорт протонов через мембрану, а с другой стороны, привести к изменению фазового состояния липидов внутренней мембраны митохондрий. Например, это может привести к увеличению жидкостности (уменьшению вязкости) липидов мембраны.

Поскольку предполагается, что лимитирующей стадией электронного транспорта является перенос электронов от коэнзима-Q на цитохромную цепочку, причем скорость переноса определяется скоростью диффузии коэнзима-Q в мембране, то уменьшение вязкости должно привести к увеличению скорости диффузии коэнзима-Q, а следовательно, и скорости дыхания.

Вещество В ускоряет дыхание на 72%. Оно отличается от вещества А тем, что к ароматическому радикалу присоединена N(СН3)2 группа. Молекулярные веса веществ А и В близки и довольно близки их эффекты на скорость дыхания, различие, которое имеется, обусловлено, видимо, какими-то специфическими взаимодействиями с участниками электрон-транспортной цепи.

Наибольший стимулирующий эффект наблюдается для пикраминовой кислоты, которая по сравнению с ДНФ имеет добавочную NH2-группу, расположенную рядом с ОН-группой. Она увеличивает скорость дыхания на 144%. Это видимо приводит к увеличению константы диссоциации ОН-группы, при этом способность связывать и освобождать протон увеличивается, а это, в свою очередь, увеличивает протонофорную и, следовательно, разобщающую способности.

Из приведенных результатов видно, что вариация в химической структуре радикалов, соединенных с динитрофенольным фрагментом, влияет на стимулирующий эффект соединения. Мы выяснили, что эта зависимость величины эффекта от структуры связана не только с разобщающим действием этих соединений, но и с возможным их влиянием на электронный транспорт во внутренней мембране митохондрии и активность ферментов, поставляющих восстановительные эквиваленты (электроны) в электрон-транспортную цепь.

Скорость дыхания в разобщенном состоянии определяется активностью переносчиков электронов электрон-транспортной цепи.

Опыты проводили на гомогенате крыс. Крысу декапитировали и выделяли исследуемый орган - печень. Ткань промывали ледяным физиологическим раствором. Извлеченную из раствора ткань промакивали фильтровальной бумагой и взвешивали навеску в 1 грамм. Затем ткань измельчали ножницами. Готовили 10% гомогенат (1 г ткани + 9 мл среды выделения). Для этого использовали гомогенизатор Поттера с тефлоновым пестиком, гомогенизировали при 800 об/мин в течение 0,5 минуты.

Все операции проводились на холоде, кроме того стакан, тефлоновый пестик, пипетки и среду выделения предварительно охлаждали.

Состав среды выделения:

Сахароза - 0,2 М
ЭДТА - 1 мМ
Hepes - 10 мМ
KCl - 50 мМ

рН среды выделения доводили от 2,5Н NaOH до 7,5.

Определение скорости дыхания гомогената ткани крысы проводили полярографическим методом. Измерение дыхания проводили на полярографе ZP - 7. Среда инкубации:

Сахароза - 0,2 М
ЭДТА - 1 мМ
Hepes - 10 мМ
KCl - 50 мМ
KH2PO4 - 2 мМ

Дыхательный субстрат - сукцинат натрия (конечная концентрация 1 мМ); глутамат натрия (конечная концентрация 1 мМ).

Исследуемое вещество (конечная концентрация 10-4 М).

pH реактивов доводили от 2,5Н NaOH до 7,5.

В полярографическую ячейку с электродом через специальные отверстия шприцом вносили 1 мМ среды инкубации 26°С и включали самописец. В ячейку помещали магнитную мешалку. Через полминуты вносили микропипеткой 0,2 мл гомогената ткани.

В этих условиях регистрация продолжалась 0,5 минут, затем вносили 50 мкл сукцината Na. Еще через минуту добавляли 20 мкл исследуемого вещества. Регистрация проводилась трижды, и затем брали среднее.

Предлагаемый способ позволяет получить вещества, которые повышают эффективность потребления кислорода гомогенатами ткани печени крыс, что влияет на клеточное дыхание.

Азометины, содержащие динитрофенольный фрагмент, соединенный с различными радикалами, обладают стимулирующим эффектом на потребление кислорода гомогенатами ткани печени крыс. Величина эффекта зависит от структуры радикала, связанного с динитрофенольным фрагментом. Предполагается, что исследуемые вещества не только рассеивают протонный градиент, создаваемый дыханием, но оказывает влияние и на других участников окислительного фосфорилирования в митохондриях.

Способ получения веществ, стимулирующих клеточное дыхание, содержащих динитрофенольный фрагмент, таких как 2-гидрокси-3,5-динитро-N-(салицилиден)-анилин или 2-гидрокси-3,5-динитро-N-(4-диметиламинобензилиден)-анилин, рассеивающих протонный градиент, создаваемый дыханием и влияющих на окислительное фосфорилирование в митохондриях, взаимодействием 2-амино-4,6-динитрофенола и салицилового альдегида или п-диметиламинобензальдегида.
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, СТИМУЛИРУЮЩИХ КЛЕТОЧНОЕ ДЫХАНИЕ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
27.06.2013
№216.012.5058

Способ получения материалов на основе y(ваве)cuo

Изобретение относится к способу получения материалов на основе сложного оксида Y(BaBe)CuO с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения...
Тип: Изобретение
Номер охранного документа: 0002486161
Дата охранного документа: 27.06.2013
19.01.2018
№218.016.067a

Азометины на основе α-аминопиридина, обладающие гемолитической активностью

Изобретение относится к способам получения азометинов на основе α-аминопиридина и замещенных бензальдегидов со структурной формулой где R означает м-NO, о-ОН группы, реакцию проводят при температуре 75-80°С в течение 2,5 часов. Полученные азометины обладают гемолитической активностью и...
Тип: Изобретение
Номер охранного документа: 0002631114
Дата охранного документа: 19.09.2017
17.04.2019
№219.017.1623

Способ концентрирования и определения меди, свинца и кадмия

Изобретение относится к области аналитической химии. Способ аналитического определения меди, свинца и кадмия в пробе включает контактирование пробы с цинкомом, предварительно нанесенным на высокоосновной анионит JRA-400 из водно-ацетоного раствора, и определение упомянутых элементов методом...
Тип: Изобретение
Номер охранного документа: 0002361660
Дата охранного документа: 20.07.2009
09.05.2019
№219.017.4f62

Способ очистки сточных вод от красителей

Изобретение относится к способам очистки сточных вод от красителей фотокаталитическим окислением под давлением кислорода и может быть использовано при очистке сточных вод от азокрасителей в текстильной промышленности. Для осуществления способа проводят очистку от азокрасителей в ячейке с...
Тип: Изобретение
Номер охранного документа: 0002404930
Дата охранного документа: 27.11.2010
24.05.2019
№219.017.5fa5

Мембрана медьселективного электрода

Изобретение относится к ионометрии, потенциометрическим методам анализа и контроля концентрации ионов в водных растворах и может быть использовано в химической, металлургической промышленности, в оптической химии, при научных исследованиях в качестве чувствительного элемента ионоселективного...
Тип: Изобретение
Номер охранного документа: 0002399040
Дата охранного документа: 10.09.2010
Показаны записи 1-3 из 3.
10.02.2013
№216.012.2432

Способ и устройство для вращения панелей солнечных батарей

Изобретение относится к области использования солнечной энергии и может быть применено в устройствах солнечных батарей и предназначено для теплоснабжения домов, коттеджей, предприятий, зданий сельскохозяйственного и другого назначения. Способ для вращения панелей солнечных батарей включает...
Тип: Изобретение
Номер охранного документа: 0002474768
Дата охранного документа: 10.02.2013
27.06.2013
№216.012.5058

Способ получения материалов на основе y(ваве)cuo

Изобретение относится к способу получения материалов на основе сложного оксида Y(BaBe)CuO с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения...
Тип: Изобретение
Номер охранного документа: 0002486161
Дата охранного документа: 27.06.2013
19.01.2018
№218.016.067a

Азометины на основе α-аминопиридина, обладающие гемолитической активностью

Изобретение относится к способам получения азометинов на основе α-аминопиридина и замещенных бензальдегидов со структурной формулой где R означает м-NO, о-ОН группы, реакцию проводят при температуре 75-80°С в течение 2,5 часов. Полученные азометины обладают гемолитической активностью и...
Тип: Изобретение
Номер охранного документа: 0002631114
Дата охранного документа: 19.09.2017
+ добавить свой РИД