×
20.01.2013
216.012.1c5e

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения гипсового вяжущего. Способ получения гипсового вяжущего путем сухой переработки исходного сырья, представляющего собой фосфогипс и/или гипсовый камень и модифицирующую добавку, включающий перемешивание, термообработку и измельчение исходного сырья под действием внешнего переменного электромагнитного поля в диапазоне частот от 10 до 1000 Гц при напряженности до 100 КА/м в присутствии магнитовосприимчивого гранулированного наполнителя с дальнейшим разделением полученного при этом сухого порошка на гипсового вяжущего и магнитовосприимчивого гранулированного наполнителя. Технический результат - повышение качества получаемого продукта, упрощение технологии изготовления, снижение энергозатрат. 10 з.п. ф-лы, 7 табл., 7 пр.

Изобретение относится к способу получения гипсового вяжущего, например марок Г-(2-16) путем переработки фосфогипсовых отвалов, образовавшихся как побочный продукт производства фосфорной кислоты из апатитового и фосфоритового сырья и сформированных на базе функционирования технологических комплексов получения минеральных удобрений, или переработкой гипсового камня. Допускается также совместная переработка фосфогипса и гипсового камня. Данное изобретение может использоваться в промышленной неорганической химии, строительной индустрии и индустрии производства минеральных удобрений. Работа предприятий минудобрений сопровождается образованием крупнотоннажных отходов, объем которых достигает десятки миллионов тонн. Использование отходов фосфогипса в производстве изделий строительной индустрии и для получения гипса строительного является одним из перспективных направлений в утилизации наиболее массового вида отходов предприятия.

В патентной и технической литературе описано множество способов получения гипсового вяжущего путем переработки природного сырья или отходов производства, содержащих сульфат кальция, в частности из фосфогипса, гипсового камня.

Так известен способ получения гипсового вяжущего из природного сырья, например, из фосфогипса, путем выделения твердых частиц из пылевоздушной смеси в пылеосадительном агрегате при температуре 160-190°С [RU 2302395, опубл. 10.07.2007]. Известный способ достаточно сложный в аппаратном исполнении.

Описан способ получения вяжущего материала (цемента, извести, гипса), включающий получения, например, цементно-воздушной смеси в камере распыления с последующим встряхиванием и перемешиванием под действием переменного электромагнитного поля в камере, выполненной из диэлектрика, снабженной электродами, создающими переменное электромагнитное поле, осуществляющими встряхивание и перемешивание, за счет вихревых потоков и вибраций электродов, обусловленных их электромагнитным воздействием [RU 2366510. опубл. 12.03.2008]. Способ достаточно сложный в технологическом исполнении, требующий использования аппарата со специальной конструкцией электрода, необходимостью использования диэлектрической камеры, и, как следствие, отличающимся сложным процессом управления и невысокой производительностью.

Известен также способ получения гипсового вяжущего, который заключается в термической обработке гипсового камня путем облучения электромагнитным полем СВЧ [RU 2040498, опубл. 25.07.1995]. Способу присущи те же недостатки.

Известен способ получения гипсового вяжущего, который принят авторами за прототип, включающий механическое дробление, дегидратацию (термообработку) гипса с размером кусков от 10 до 500 мм в электромагнитном поле сверхвысокой частоты и последующее измельчение полученного полугидрата в шаровой мельнице [RU 2023699, опубл. 30.11.1994]. Известный способ также сложный в аппаратном исполнении и характеризуется многостадийностью.

Задачей настоящего изобретения является упрощение способа и повышение производительности процесса получения гипсового вяжущего, уменьшение энергозатрат, а также утилизация фосфогипсовых отвалов.

Поставленная задача достигается предложенным способом получения гипсового вяжущего путем сухой переработки исходного сырья на основе гипса, включающей измельчение и термообработку с использованием электромагнитного поля, отличающийся тем, что согласно изобретению исходное сырье, представляющее собой фосфогипс и/или гипсовый камень и модифицирующую добавку, подвергают перемешиванию, с последующей термообработкой и измельчением под действием внешнего переменного электромагнитного поля в диапазоне частот от 10 до 1000 Гц при напряженности до 100 КА/м в присутствии магнитовосприимчивого гранулированного наполнителя с дальнейшим разделением полученного при этом сухого порошка на гипсового вяжущего и магнитовосприимчивого гранулированного наполнителя.

Для генерирования электромагнитных полей обычно используют индуктор соленоидного типа, способного генерировать синусоидальные переменные электромагнитные поля.

В качестве магнитовосприимчивого гранулированного наполнителя (гранулята) предпочтительно используют гранулы феррита бария.

Преимущественно используют феррита бария, содержащий связующее, например, γ-Аl2О3 в количестве до 60 мас.%.

Гранулы феррита бария могут быть покрыты защитной оболочкой из металлических и неметаллических материалов, например, нержавеющая сталь Х18Н10Т, алюминий, дюраль, фторопласты или полиуретаны.

Процесс переработки ведут преимущественно при объемном соотношении магнитовосприимчивого гранулированного наполнителя к исходному сырью, равном 1:(0,2-10), при температуре не выше 190°С и давлении не более 10 ати.

В качестве модифицирующей добавки преимущественно используют, например, гашеную и негашеную известь, молотый известняк, цемент, в количестве не более 5 мас.%. по отношению к фосфогипсу или гипсу или их смеси.

Процесс перемешивания, термообработки и измельчение исходного сырья можно проводить последовательно один за другим в разных аппаратах, а также в одном аппарате одновременно в непрерывном режиме.

Процесс переработки исходного сырья в непрерывном режиме ведут при удельной скорости подачи исходного сырья не выше 50 кг/ч на один литр реакционного объема.

Проведение процесса в непрерывном режиме более технологично в промышленном масштабе в связи с отсутствием стадий переключения режимов, стабильностью параметров, расширенной возможностью автоматизации и регулирования процесса, минимизацией ручного труда.

Основные преимущества способа заключаются в возможности совмещать и объединять в одну стадию процессы грубого и тонкого помола, а также термообработку исходного сырья с сохранением высокой производительности и высокого качества получаемого продукта. При этом ввиду использования магнитовосприимчивого гранулированного наполнителя и переменных магнитных полей отсутствует необходимость использования подвижных конструкций типа вращающихся печей. За счет одностадийности, более низкой степени тепловых потерь снижаются удельные энергозатраты.

Технический результат - упрощение реализации процесса в технологическом исполнении получения гипсового вяжущего, реализация аппаратной одностадийности, повышение производительности и качества целевого продукта, а также снижение энергозатрат.

Изобретение соответствует критерию «новизна», так как в известной научно-технической и патентной литературе отсутствует полная совокупность признаков, характеризующих предлагаемое изобретение. Изобретение также соответствует критерию «изобретательский уровень», так как отсутствуют сведения получения гипсового вяжущего в присутствии магнитовосприимчивого гранулированного наполнителя, и это не вытекает для специалиста явным образом из известного уровня техники для возможности его использования в предлагаемом процессе.

Изобретение промышленно применимо, так его можно использовать в промышленной неорганической химии, строительной индустрии и индустрии производства минеральных удобрений.

В общем виде процесс получения гипсового вяжущего, осуществляют следующим образом.

Исходный фосфогипс, гипсовый камень или их смесь, а также модифицирующая добавка (модификатор) путем шнековой подачи непрерывно подают в реактор электромагнитной обработки (РЭМО). Давление в реакционной камере поддерживают на уровне не выше 10 ати, температура не выше - 190°С. В РЭМО находится магнитовосприимчивый гранулированный наполнитель (гранулят), инкапсулированный в оболочку из металлических или неметаллических материалов. Толщина оболочки - 2-5 мм. Средний эквивалентный диаметр гранул - 5-10 мм. Материальный поток фосфогипса, гипсового камня, модификатора и магнитовосприимчивого гранулированного наполнителя (гранулята) смешивается на входе в РЭМО. После этого на вход индуктора подают переменное напряжение с заданными характеристиками. На выходе из РЭМО гипсовое вяжущее и магнитовосприимчивый гранулированный наполнитель разделяются на фильтре, являющимся неотъемлемой частью конструктива РЭМО.

Изобретение иллюстрируется конкретными примерами, не ограничивающими его объем.

ПРИМЕР 1

В качестве сырья используется ФОСФОГИПС ТУ 113-08-418-94, полученный из апатитового концентрата дигидратным методом (мелеуз). Внешний вид - серовато-белая мелкокристаллическая масса.

Химсостав фосфогипса
Фосфогипс в виде CaSO4 - 92,28%
№ пп Показатель Массовая доля, %
1 СаО 39,4
2 SO3 53,4
3 MgO 0,08-0,26
4 P2O5, в т.ч. водораствор. 0,94, в т.ч.водораствор.0,25-1,2
5 H2O общ. 30,0-45
6 Н2O кристалл 19,0-20,0
7 F 0,30
8 Na2O 0,02-0,2
9 K2O 0,004-0,08
10 SiO2 0,3-1,0
11 Fe2O4 0,05-0,16
12 Аl2O3 0,08-0,2
13 Нерастворимый остаток 0,25
14 As 0,0002
15 Cu 0,0026
16 Сr 0,00015
17 Cd 0,000081
18 Ni 0,0005
19 Pb 0,00007
20 Редкоземельные элементы 0,57
21 Хлор Следы

Все примеси металлов могут быть в виде сульфатов.

Исходный фосфогипс и известняк путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки (РЭМО). Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 30 кг/ч на литр реакционного пространства - 900 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,1 ати, температура - 163°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 60 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из нержавеющей стали 40Х18Н10Т. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, известняк и гранулят феррита бария смешиваются на входе в РЭМО. Массовое отношение фосфогипса/известняк - 98/2. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный фосфогипс и магнитовосприимчивый гранулированный наполнитель разделяются на фильтре, являющимся неотъемлемой частью конструктива РЭМО. Полученный порошок гипсового вяжущего имеет следующие характеристики, представленные в таблице №1.

Таблица №1
Истинная плотность, г/см3 Прочность на изгиб, МПа/ (кгс/см2) Прочность на сжатие, МПа / (кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ 125-79
2,6 2,8/(28) 5,1/(51) 7860 16/27 Г5

ПРИМЕР 2

В качестве сырья используется ФОСФОГИПС ТУ 113-08-418-94, полученный из апатитового концентрата Кольского п-ва дигидратным методом. Внешний вид - серовато-белая мелкокристаллическая масса.

Химсостав фосфогипса:
№ пп Показатель Массовая доля, %
1 CaSO4×2H2O 92,7
2 SrSO4×2H2O 1,4
3 SiO2 0,8
4 CaHPO4 0,2
5 FeHPO4 0,4
6 MgHPO4 0,2
7 AlPO4 0,5
8 H3PO4 0,9
9 CaF2 0,4

Исходный фосфогипс и известняк путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 40 кг/ч на литр реакционного пространства - 1200 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,3 ати, температура - 170°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 50 мас.% связующего (γ-Аl2O3) и инкапсулированного в оболочку из нержавеющей стали 40Х18Н10Т. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, известняк и гранулят феррита бария смешиваются на входе в РЭМО. Массовое отношение фосфогипса/известняк - 98/2. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный фосфогипс и гранулят разделяются на фильтре, являющимся неотъемлемой частью конструктива РЭМО. Характеристики получаемого продукта представлены в таблице №2.

Таблица №2.
Истинная плотность, г/см3 Прочность на изгиб, МПа/ (кгс/см2) Прочность на сжатие, МПа/ (кгс/см2) Удельная Сроки схватывания, начало/конец, ч Соответствие марке по ГСТ125-79
поверхность, см2
2,5 2,5/(25) 4,1/(41) 6370 17/29 Г4

ПРИМЕР 3

В качестве сырья используется ФОСФОГИПС ТУ 113-08-418-94,

полученный из фосфоритового сырья Каратау дигидратным методом.

Внешний вид - серовато-белая мелкокристаллическая масса с примесью укрупненных агломератов.

Химсостав фосфогипса:
№ пп Показатель Массовая доля, %
1 CaSO4×2H2O 80,5
2 SrSO4×2H2O не обн.
3 SiO2 17,0
4 СаНРO4 0,3
5 FeHPO4 0,3
6 MgHPO4 0,7
7 AlPO4 0,4
8 H3PO4 0,2
9 CaF2 0,2

Исходный фосфогипс и известняк путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 50 кг/ч на литр реакционного пространства - 1500 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,2 ати, температура - 165°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 50 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из нержавеющей стали 40Х18Н10Т. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, известняк и гранулят феррита бария смешиваются на входе в РЭМО. Массовое отношение фосфогипса/известняк - 99/1. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 95-100 КА/м.

На выходе из РЭМО обработанный фосфогипс и гранулят разделяются на фильтре, являющимся неотъемлемой частью конструктива РЭМО. Характеристики получаемого продукта представлены в таблице №3.

Таблица №3
Истинная плотность, г/см3 Прочность на изгиб, МПа/ (кгс/см2) Прочность на сжатие, МПа/ (кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ 125-79
2,5 1,25/(12,5) 2,20/(22) 5130 15/28 Г2

ПРИМЕР 4

В качестве сырья используется гипсовый камень Номовосковского месторождения гипсового камня с содержанием CaSO4×2H2O около 90 мас.% и кристаллизационной воды - около 19 мас.% (ГОСТ 4013-82).

Внешний вид - белые камни, иногда с легким сероватым оттенком, со средним размером камней 3-5 см.

Гипсовый камень и портландцемент ПЦ-400 (ГОСТ 10178-85) путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 10 кг/ч на литр реакционного пространства - 300 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 9,2 ати, температура - 165°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 30 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из нержавеющей стали 40Х18Н10Т. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 37 кг гранулята. Материальный поток гипсового камня, портландцемента и гранулята феррита бария смешиваются на входе в РЭМО. Массовое отношение гипсовый камень/цемент - 95/5. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный гипс и гранулят разделяются на фильтре, являющемся неотъемлемой частью конструктива РЭМО.

Характеристики получаемого продукта представлены в таблице №4.

Таблица №4
Истинная плотность, г/см3 Прочность на изгиб, МПа/ (кгс/см2) Прочность на сжатие, МПа/ (кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ 125-79
2,8 1,63/(163) 6,2/(62) 9227 7/17 Г16

ПРИМЕР 5

В качестве сырья используется смесь фосфогипса из примера 1 и гипсового камня из примера 4 в соотношении 50/50. Данная смесь модифицируется портландцементом ПЦ-400 (ГОСТ 10178-85).

Смесь фосфогипса и гипсового камня с портландцементом ПЦ-400 (ГОСТ 10178-85) путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 50 кг/ч на литр реакционного пространства - 1500 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,5 ати, температура - 165°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 30 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из нержавеющей стали 40Х18Н10Т.

Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, гипсового камня, портландцемента и гранулята феррита бария смешиваются на входе в РЭМО. Массовое отношение (фосфогипс+гипсовый камень)/цемент - 95/5. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный гипс и гранулят разделяются на фильтре, являющемся неотъемлемой частью конструктива РЭМО. Характеристики получаемого продукта представлены в таблице №5.

Таблица №5
Истинная плотность, г/см3 Прочность на изгиб,
МПа/ (кгс/см2)
Прочность на сжатие, МПа/ (кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ125-79
2,75 2,6/(26) 5,05/(50,5) 7335 13/21 Г5

ПРИМЕР 6

В качестве сырья используется фосфогипс из примера 1.

Фосфогипс и известняк путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 30 кг/ч на литр реакционного пространства - 1200 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,5 ати, температура - 190°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 50 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из алюминия. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, известняка и гранулята феррита бария смешиваются на входе в РЭМО. Массовое отношение фосфогипс/известняк - 98/2. После этого на вход индуктора подают напряжение 380/220 В с частотой 1000 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный гипс и гранулят разделяются на фильтре, являющемся неотъемлемой частью конструктива РЭМО.

Характеристики получаемого продукта представлены в таблице №6.

Таблица №6
Истинная плотность, г/см3 Прочность на изгиб, МПа/(кгс/см2) Прочность на сжатие, МПа/ (кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ 125-79
2,53 1,27/(12,7) 2,40/(24) 5505 14/28 Г2

ПРИМЕР 7

В качестве сырья используется фосфогипс из примера 1.

Фосфогипс и известняк путем шнековой подачи непрерывно поступает в реактор электромагнитной обработки РЭМО. Объем реакционной камеры - 30 л. Удельная производительность по фосфогипсу составляет 30 кг/ч на литр реакционного пространства - 1200 кг/ч в пересчете на весь реактор. Давление в реакционной камере поддерживают на уровне 1,5 ати, температура - 160°С. В РЭМО находится гранулят намагниченного до насыщения феррита бария, содержащего 50 мас.% связующего (γ-Аl2О3) и инкапсулированного в оболочку из алюминия. Толщина оболочки - 2 мм. Средний эквивалентный диаметр гранул - 5 мм. В реакторе находится 30 кг гранулята. Материальный поток фосфогипса, известняка и гранулята феррита бария смешиваются на входе в РЭМО. Массовое отношение фосфогипс/известняк - 98/2. После этого на вход индуктора подают напряжение 380/220 В с частотой 10 Гц, при напряженности поля в реакционной зоне 95-100 КА/м. На выходе из РЭМО обработанный гипс и гранулят разделяются на фильтре, являющемся неотъемлемой частью конструктива РЭМО.

Характеристики получаемого продукта представлены в таблице №7.

Таблица №7
Истинная плотность, г/см3 Прочность на изгиб, МПа/ (кгс/см2) Прочность на сжатие, МПа/(кгс/см2) Удельная поверхность, см2 Сроки схватывания, начало/конец, ч Соответствие марке по ГОСТ 125-79
2,5 2,6/(26) 4,3/(43) 6425 16/28 Г4

Источник поступления информации: Роспатент

Показаны записи 11-20 из 62.
10.05.2014
№216.012.c254

Способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора

Изобретение относится к области катализа. Описан способ приготовления катализатора для окислительной конденсации метана (ОКМ) до C углеводородов, включающий нанесение марганца и вольфрамата натрия на носитель диоксид кремния путем его последовательной пропитки водными растворами нитрата...
Тип: Изобретение
Номер охранного документа: 0002515497
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c261

Способ приготовления катализатора для полного окисления углеводородов, катализатор, приготовленный по этому способу, и способ очистки воздуха от углеводородов с использованием полученного катализатора

Изобретение относится к области катализа. Описан способ приготовления катализатора для полного окисления углеводородов путем нанесения платины или палладия на прокаленный сульфатированный цирконийоксидный носитель путем пропитки его водным раствором соединения платины или палладия с последующей...
Тип: Изобретение
Номер охранного документа: 0002515510
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c262

Способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора

Изобретение относится к области катализа. Описан способ приготовления катализатора для получения ароматических углеводородов путем конверсии углеводородных газов, включающий нанесение молибдена на носитель, представляющий собой цеолит HZSM-5, путем пропитки его водным раствором соли молибдена с...
Тип: Изобретение
Номер охранного документа: 0002515511
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c265

Катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения

Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,5-1,0 мас.%, рутений - 1,0-5,0 мас.% и оксид алюминия остальное. Описан способ приготовления указанного выше катализатора. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002515514
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c274

Катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты)

Изобретение относится к области катализа. Описан катализатор избирательного окисления монооксида углерода в смеси с аммиаком, содержащий золото - 0,7-1,2 мас.%, Fe - 0,8-5,0 мас.% и кристаллическую тэта-модификацию оксида алюминия (θ-AlO) - остальное. Описаны способы получения указанного выше...
Тип: Изобретение
Номер охранного документа: 0002515529
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.df8a

Способ получения n-замещенных 2,5-дитиоцианато-1н-пирролов

Изобретение относится к способу получения N-замещенных 2,5-дитиоцианато-1H-пирролов общей формулы где R означает низший алкил или фенил, путем взаимодействия тиоцианата калия (KSCN) с соответствующим N-замещенным-1H-пирролом под действием окислителя - пероксодисульфат калия (KSO), в среде...
Тип: Изобретение
Номер охранного документа: 0002523012
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df8b

Катализатор для получения этилена и способ получения этилена с использованием этого катализатора

Изобретение относится к технологии переработки газообразного углеводородного сырья для получения этилена и касается катализатора и способа получения этилена путем окислительной конденсации метана. Катализатор содержит активную фазу, представляющую собой смесь оксидов церия (CeO) и лантана (LaO)...
Тип: Изобретение
Номер охранного документа: 0002523013
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df8c

Способ получения кетоозонидов

Изобретение относится к области химии органических пероксидов, производных кетонов, а именно к новому способу получения неописанных ранее кетоозонидов общей формулы: где R=Н, Cl или Br, заключающемуся во взаимодействии β,δ-трикетонов общей формулы II: где R имеет вышеуказанные значения, с...
Тип: Изобретение
Номер охранного документа: 0002523014
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e156

Способ получения нитроцеллюлозы

Изобретение относится к области химии органических нитросоединений, а именно к способу получения нитратов целлюлозы с высоким содержанием азота, которые находят применение в производстве бездымных порохов и взрывчатых веществ. В способе получения нитроцеллюлозы путем нитрования целлюлозы смесью...
Тип: Изобретение
Номер охранного документа: 0002523472
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e29b

Способ получения ароматических углеводородов

Изобретение относится к способу получения ароматических углеводородов из этана в присутствии катализатора. Способ характеризуется тем, что газовую смесь этана и кислорода, взятую в объемном соотношении 60-70 и 30-40 соответственно, подвергают контактированию с нагретым до 400-450°C...
Тип: Изобретение
Номер охранного документа: 0002523801
Дата охранного документа: 27.07.2014
+ добавить свой РИД