×
10.01.2013
216.012.179e

Результат интеллектуальной деятельности: ОБРАБОТКА ХВОСТОВЫХ ГАЗОВ УСТАНОВКИ КЛАУСА С ИСПОЛЬЗОВАНИЕМ ОПТИМИЗИРОВАННОЙ ПОСЛЕДОВАТЕЛЬНОСТИ КАТАЛИЗАТОРОВ

Вид РИД

Изобретение

№ охранного документа
0002471538
Дата охранного документа
10.01.2013
Аннотация: Изобретение относится к способу конверсии в HS серосодержащих соединений, присутствующих в газе, содержащем HS и серосодержащие соединения. Данный способ включает стадию приведения в контакт упомянутого газа с газом-восстановителем в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт и молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.%, а поверхность оксида алюминия составляет больше 140 м/г. Способ далее включает стадию В приведения в контакт, по меньшей мере, одной фракции газа, выходящего со стадии А, с катализатором, содержащим, по меньшей мере, один щелочноземельный металл, по меньшей мере, одну легирующую добавку, выбранную из группы, состоящей из железа, кобальта и молибдена, и по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, причем катализатор стадии В) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида. Изобретение позволяет без необходимости повышения температуры реакции конверсировать серосодержащие соединения в HS. 9 з.п. ф-лы, 2 табл.

Существует множество способов превращения H2S в серу, среди которых наиболее распространенным является модифицированный процесс Клауса.

После отделения аминов газ, называемый "кислым" и содержащий H2S, направляют в печь, работающую, как правило, при 1100°C.

Добавка воздуха позволяет частично окислять присутствующий H2S до SO2 и таким образом получать после данной стадии термической обработки молярное соотношение H2S и SO2, равное 2.

После данной стадии приблизительно 70% серосодержащих соединений превращаются в элементарную серу, извлекаемую конденсацией.

После выхода с данной стадии газы после подогрева подают в последовательно расположенные каталитические реакторы (чаще всего в два или три реактора), предназначенные для обеспечения проведения реакции Клауса (1), а также реакций гидролиза COS (2) и CS2 (3), т.е. примесей, образовавшихся ранее.

2H2S + SO2 → 2H2O + 3/xSx (1)
COS + H2O → CO2 + H2S (2)
CS2 + 2H2O → CO2 + 2H2S (3)

Любая неполнота конверсии ведет к уменьшению степени извлечения серы и, следовательно, к повышению выбросов в атмосферу в конце технологической цепочки.

До сих пор в случае традиционного модифицированного процесса Клауса газы, выходящие со стадии катализа, затем сжигают с образованием SO2, который при этом выбрасывается в атмосферу.

В течение последних сорока лет для уменьшения вредных выбросов в атмосферу были разработаны способы конечной обработки, называемые обработкой хвостовых газов. В большинстве способов на выходе со стадии каталитического процесса Клауса требуется восстановление всех серосодержащих газов до H2S как перед осуществлением прямого окисления H2S до серы (4) (при температуре ниже или выше точки росы паров серы), так и перед рециркуляцией образовавшегося H2S в печь, находящуюся в начале технологической цепочки. При этом степень извлечения серы оказывается значительно улучшенной, а выбросы серосодержащих соединений в атмосферу уменьшенными.

H2S + 1/2O2 → H2O + 1/xSx (4)

Гидрирование серосодержащих соединений традиционно осуществляют с гетерогенным катализатором, работающим в большинстве случаев при температуре в интервале от 200 (для лучших катализаторов) до 300°C (для менее активных катализаторов). Более точно, катализатор обеспечивает протекание реакций гидрирования и/или гидролиза совокупности присутствующих серосодержащих соединений (в том числе следов паров серы) с получением H2S. Потерю катализатором активности на практике компенсируют за счет повышения температуры в реакторе. Однако такое повышение температуры ускоряет старение катализатора.

Используемые катализаторы, как правило, представляют собой нанесенные катализаторы CoMo.

Газ, выходящий после процесса Клауса, нагревают в потоке посредством горелки до температуры реакции.

Газы-восстановители (H2, CO), необходимые для осуществления реакций, также содержатся в потоке.

Ослабление активности катализатора гидрирования означает потерю эффективности использования газов-восстановителей, снижение степени конверсии CO и повышенное образование COS.

COS может образовываться в процессе Клауса, но также может образовываться на входе в реактор за счет взаимодействия CO и H2S по реакции (5).

H2S + CO → H2 + COS (5)

Так, например, концентрация COS может увеличиваться с момента входа в реактор гидрирования до уровня, соответствующего уровню, при котором может происходить сдвиг направления конверсии H2S и даже могут происходить другие нежелательные реакции.

Происходящие при этом реакции могут представлять собой реакции собственно гидрирования:

SO2 + 3H2 → 2H2O + H2S;

Sx + H2 → H2S;

CS2 + 2H2 → CH4 + H2S;

COS + 3H2 → CH3SH + H2O;

CH3SH + H2 → CH4 + H2S;

реакции гидролиза:

COS + H2O → CO2 + H2S;

CS2 + 2H2O → CO2 + 2H2S;

реакции конверсии монооксида углерода с водой или H2S:

H2O + CO → H2 + CO2;

H2S + CO → H2 + COS.

Такие реакции сдвига направления конверсии являются ключевыми для работы катализатора гидрирования. Понижение активности выражается в меньшей степени трансформации CO с образованием H2 и, следовательно, в увеличении концентрации CO и повышении содержания COS (в силу увеличения степени конверсии CO с H2S). Таким образом, потеря активности вызывает увеличение содержания COS.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В WO 98/07502 описана последовательность катализаторов. Катализатор гидрирования нанесен на алюмосиликат и легирован металлами из VI и/или VIII группы. Катализатор гидролиза содержит оксид алюминия или оксид титана, легированный при необходимости оксидом церия, циркония, оксидами или гидроксидами щелочных металлов, оксидами или гидроксидами редкоземельных элементов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к способу конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения. Данный способ включает стадию A приведения в контакт упомянутого газа с газом-восстановителем в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт и молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.%, а поверхность оксида алюминия составляет больше 140 м2/г. Способ далее включает стадию B приведения в контакт по меньшей мере одной фракции газа, выходящего со стадии A, с катализатором, содержащим по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, и по меньшей мере одного щелочноземельного металла, причем содержание оксидов титана и/или циркония составляет больше 5% от массы катализатора, а катализатор стадии B) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида, при этом общее массовое содержание щелочноземельных металлов находится в интервале от 0,5 до 60 мас.%.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В приведенном далее тексте группы химических элементов указаны согласно классификации CAS, описанной в "CRC Handbook of Chemistry and Physics", издательство CRC press, под редакцией D.R. Lide, 81-е издание, 2000-2001 гг.

Настоящее изобретение относится к способу конверсии в H2S серосодержащих соединений, присутствующих в газе, содержащем H2S и серосодержащие соединения, причем данный способ включает следующие стадии:

a) стадия A приведения в контакт упомянутого газа с газом-восстановителем, предпочтительно H2 и/или CO, в присутствии катализатора гидрирования, содержащего по меньшей мере кобальт, молибден и в качестве носителя оксид алюминия, причем сумма содержаний кобальта и молибдена в пересчете на оксиды находится в интервале от 3 до 25 мас.% и предпочтительно в интервале от 6 до 20 мас.%, а поверхность оксида алюминия составляет больше 140 м2/г и предпочтительно больше 180 м2/г и наиболее предпочтительно находится в интервале от 190 до 340 м2/г;

b) стадия B приведения в контакт по меньшей мере одной фракции газа, выходящего со стадии A, с катализатором, содержащим по меньшей мере одно соединение, выбранное из группы, состоящей из оксида титана и оксида циркония, и по меньшей мере одного щелочноземельного металла, предпочтительно кальция, причем содержание оксидов титана и/или циркония составляет больше 5% от массы катализатора, а катализатор стадии B) находится в виде либо сплошного, состоящего из оксидов материала, содержащего только упомянутые оксиды, либо находится в виде нанесенного оксида, при этом общее массовое содержание щелочноземельных металлов находится в интервале от 0,5 до 60 мас.%, предпочтительно в интервале от 1 до 50 мас.% и более предпочтительно в интервале от 2 до 35 мас.%.

Газ, содержащий H2S и серосодержащие соединения, подают на стадию A) в общем случае с содержанием H2S меньше 3 мол.%, содержанием SO2 меньше 2 мол.% и суммой содержаний всех других серосодержащих соединений меньше 1 мол.%. Содержание упомянутых компонентов предпочтительно составляет меньше 2, 1,5 и 1 мол.% соответственно. Более предпочтительно содержание упомянутых компонентов составляет меньше 1,5, 1 и 0,7 мол.% соответственно.

Фракцию газа, выходящего со стадии A), подают на стадию B) в общем случае с молярным соотношением H2S/SO2 меньше 5.

Оксиды титана и/или циркония могут быть при необходимости нанесены на оксид алюминия.

Катализатор стадии B) может содержать по меньшей мере оксид титана и по меньшей мере один щелочноземельный металл.

Кроме того, он может содержать по меньшей мере одну легирующую добавку, выбранную из группы, состоящей из групп VIIIB и VIB, причем общее массовое содержание легирующих добавок находится в интервале от 0,5 до 50%, предпочтительно в интервале от 1 до 30% и более предпочтительно в интервале от 1 до 15%. Легирующую добавку в общем случае выбирают из группы, состоящей из железа, кобальта и молибдена, и предпочтительно из группы, состоящей из кобальта и молибдена.

Настоящее изобретение относится к последовательности катализаторов, обеспечивающей в постоянных экспериментальных условиях улучшенный выход по превращению H2S.

Идея, в данном случае касающаяся гидрирования, состоит в том, чтобы лучшим образом превращать, в частности, COS, а также и CS2 без необходимости повышения температуры реакции, вызывающего более существенный расход энергии.

Таким образом, сущность изобретения состоит в том, чтобы применять, например, последовательность по меньшей мере двух катализаторов, размещенных в одном и том же каталитическом реакторе или в нескольких расположенных последовательно каталитических реакторах, позволяющих последовательно

a) осуществлять на стадии A реакции гидрирования серосодержащих соединений;

b) улучшить на стадии B конверсию некоторых малоактивных соединений, в частности COS и CS2.

Катализатор стадии B может находиться в любой известной форме, например, в виде порошка, шариков, экструдированных элементов, сплошных или измельченных материалов, и предпочтительно в виде экструдированных элементов цилиндрической или многодольной формы или в виде шариков.

По одному из вариантов, по которому в катализаторе стадии B) содержится оксид титана, к катализатору стадии B) добавляют сульфат кальция, бария, стронция или магния и предпочтительно сульфат кальция.

В случае формования катализатора стадии B) путем смешивания и последующей экструзии длина экструдированных элементов, отрезаемых в поперечном направлении, в общем случае находится в интервале от 0,5 до 8 мм и предпочтительно в интервале от 0,8 до 5 мм.

Для получения катализатора стадии B) элементы и возможные легирующие добавки наносят любым способом, известным специалистам в данной области техники. Например, можно осуществлять пропитку готового носителя элементами, подлежащими нанесению, или предшественниками таких элементов. Может быть применено также смешивание элементов или предшественников таких элементов с носителем в ходе его формования или после него. Введение легирующих добавок в носитель может быть осуществлено также соосаждением.

В случае нанесения пропиткой данную операцию осуществляют известным образом приведением в контакт носителя с одним или несколькими растворами, одним или несколькими золями и/или одним или несколькими гелями, содержащими по меньшей мере один элемент в виде оксида или соли или их предшественников. В общем случае операцию осуществляют погружением носителя в определенный объем раствора по меньшей мере одного предшественника по меньшей мере одной легирующей добавки.

В предпочтительном варианте осуществления введение легирующих элементов осуществляют "сухой" пропиткой.

В альтернативном варианте пропитку осуществляют с избытком раствора. Затем избытку раствора дают стечь.

Стадии A и B в общем случае осуществляют при температуре в интервале от 50 до 350°C, предпочтительно в интервале от 100 до 330°C, более предпочтительно в интервале от 130 до 310°C и наиболее предпочтительно в интервале от 170 до 300°C.

VVH (объемная скорость подачи) в общем случае находится в интервале от 300 до 5000 ч-1, предпочтительно в интервале от 500 до 4000 ч-1 и более предпочтительно в интервале от 1000 до 3500 ч-1. Давление в общем случае составляет меньше 0,5 МПа и предпочтительно меньше 0,2 МПа.

ПРИМЕРЫ

Катализатор A: CoMo

Катализатор A соответствует катализатору TG 107, реализуемому компанией Axens. Данный катализатор представляет собой свежий катализатор на основе кобальта и молибдена, нанесенных на оксид алюминия.

Его удельная поверхность равна 223 м2/г, а общий объем пор равен 46,2 мл/100 г.

Катализатор B: CoMo

Катализатор B соответствует катализатору TG 107, бывшему в промышленном использовании в реакторе в течение года. Его удельная поверхность равна 147 м2/г, а общий объем пор равен 42,1 мл/100 г.

Катализатор загрязнен 0,7% углерода и 9% серы.

Катализатор C: TiO 2 Ca

К суспензии оксида титана, полученного гидролизом и фильтрованием по способу традиционного сернокислотного разложения ильменита, добавляют суспензию оксида кальция для нейтрализации совокупности содержащихся сульфатов.

После этого суспензию сушат при 150°C в течение часа. Затем порошок перемешивают с добавлением воды и азотной кислоты. Полученную пасту экструдируют через фильеру с получением экструдированных элементов, имеющих цилиндрическую форму.

После высушивания при 120°C и прокаливания при 450°C экструдированные элементы имеют диаметр 3,5 мм, удельную поверхность 116 м2/г при общем объеме пор 36 мл/100 г.

Содержание TiO2 равно 88% при содержании CaSO4 11%, остальное составляют потери при прокаливании, дополняющие баланс до 100%.

Катализатор D: TiO 2 CaFe

Катализатор D получают "сухой" пропиткой кислым водным раствором сульфата железа катализатора C с последующим высушиванием при 120°C и прокаливанием при 350°C.

Массовая доля железа (в пересчете на Fe2O3) равна 2,5%.

Катализатор E: TiO 2 CaCoMo

Катализатор E получают "сухой" пропиткой раствором нитрата кобальта и гептамолибдата аммония катализатора C с последующим высушиванием при 120°C и прокаливанием при 450°C.

Массовое содержание кобальта и молибдена (в пересчете на CoO и MoO3) составляет 3,1 и 13,9% соответственно.

Катализатор F: TiO 2 , введенный пропиткой

Катализатор F получают "сухой" пропиткой оксида алюминия Claus CR-3S, реализуемого компанией Axens, оксихлоридом титана, получая таким образом после прокаливания при 500°C содержание TiO2 5% и удельную поверхность 267 м2/г.

Катализатор G: TiO 2 , введенный совместным гранулированием

Катализатор G получают ускоренным совместным гранулированием оксида алюминия и геля титана с получением после прокаливания при 450°C шариков с гранулометрическим составом в интервале от 3,15 до 6,3 мм, содержанием TiO2 27% и удельной поверхностью 281 м2/г.

Катализатор H: ZrO 2 , введенный пропиткой

Катализатор H получают "сухой" пропиткой оксида алюминия Claus CR-3S, реализуемого компанией Axens, ацетатом циркония, получая таким образом после прокаливания при 500°C содержание ZrO2 3% и удельную поверхность 287 м2/г.

Катализатор I: TiO 2 K

Катализатор I соответствует катализатору из чистого TiO2, модифицированного введением калия "сухой" пропиткой, так чтобы его конечное содержание соответствовало 1,7% K2O.

Катализатор J: NiMo

Экструдированные элементы диаметром 1,6 мм из аморфного алюмосиликата, содержащего 50% оксида алюминия, обрабатывают "сухой" пропиткой раствором нитрата никеля и гептамолибдата аммония. Далее осуществляют высушивание при 120°C и прокаливание при 450°C. Массовое содержание никеля и молибдена (в пересчете на NiO и MoO3) составляет 4,0 и 15% соответственно, при удельной поверхности 238 м2/г и общем объеме пор 62 мл/100 г.

Катализатор K: CoMo

Экструдированные элементы диаметром 1,6 мм из аморфного алюмосиликата, содержащего 50% оксида алюминия, обрабатывают "сухой" пропиткой раствором нитрата кобальта и гептамолибдата аммония. Далее осуществляют высушивание при 120°C и прокаливание при 450°C. Массовое содержание кобальта и молибдена (в пересчете на CoO и MoO3) составляет 3,0 и 14,1% соответственно, при удельной поверхности 251 м2/г и общем объеме пор 68 мл/100 г.

Результаты катализа

Сравнительные испытания катализа были проведены в следующих условиях: катализаторы A, B, J или K приводили в контакт с газовым потоком, содержавшим по объему 18% CO2, 0,6% H2S, 500 ч/млн COS, 0,3% SO2, 1,2% CO, 1,5% H2, 200 ч/млн CS2, 22% H2O, 800 ч/млн S8 и при необходимости 520 ч/млн CH3SH, при VVH 2000 ч-1 и температуре 220 или 240°C.

В том же самом реакторе после катализатора A, B, J или K размещали один из катализаторов от C до I, так чтобы объем второго катализатора соответствовал одной трети объема катализатора A, B, J или K.

Эксплуатационные характеристики катализа, достигнутые в условиях равновесия, приведены в таблицах I и II.

Таблица I
Конверсия, достигнутая в условиях равновесия, в отсутствие метилмеркаптана
Катализатор(ы) Температура (°C) Конверсия, %
SO2 COS CS2
A 220 83 70 40
A 240 100 74 83
B 220 67 -470 10
B 240 92 -410 33
B и C 220 85 -100 40
B и C 240 95 -35 55
B и D 240 95 5 40
B и E 220 98 41 71
B и I 220 67 -450 17
A и C 220 85 86 67
A и E 240 100 91 88
A и F 240 89 75 51
A и G 240 87 76 49
A и H 240 91 79 56
A и I 220 83 61 45
J и C 220 77 -110 37
K и C 220 79 -24 49

Отрицательное значение конверсии означает, что соответствующее соединение на выходе содержится в большем количестве, чем на входе в реактор.

Результаты испытаний катализа показывают, что последовательность J и C обеспечивает менее хорошую конверсию, чем последовательность K и C. К тому же последовательность K и C обеспечивает менее хорошую конверсию, чем последовательность A и C.

Таблица II
Конверсия, достигнутая в условиях равновесия, в присутствии метилмеркаптана
Катализатор(ы) Температура (°C) Конверсия, %
SO2 COS CS2 CH3SH
B 240 97 -295 -45 87
B и C 220 91 -45 -41 92
B и C 240 97 10 5 95
B и E 220 100 62 72 100

Отрицательное значение конверсии означает, что соответствующее соединение на выходе содержится в большем количестве, чем на входе в реактор.

Данные результаты испытаний катализа показывают, что последовательность B и E обеспечивает более хорошую конверсию, чем последовательность B и C. Также виден эффект влияния легирующей добавки CoMo на катализатор стадии B.

Источник поступления информации: Роспатент

Показаны записи 11-19 из 19.
10.12.2013
№216.012.8925

Применение твердых веществ на основе феррита цинка в способе глубокого обессеривания кислородсодержащего сырья

Изобретение относится к области катализа. Описан способ обессеривания сырья, содержащего кислородсодержащие соединения, углеводородсодержащие соединения и серосодержащие органические соединения, улавливанием серы на улавливающей массе, содержащей оксиды железа или оксиды цинка и более 20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002500791
Дата охранного документа: 10.12.2013
27.02.2014
№216.012.a6c0

Способ получения спирта в контексте биорафинирования

Изобретение относится к способу получения спирта из предварительно обработанной лигноцеллюлозной биомассы. Способ включает этап ферментативного гидролиза ферментами, разлагающими целлюлозу и/или гемицеллюлозу, полученными при использовании по меньшей мере одного типа отходов с другого процесса...
Тип: Изобретение
Номер охранного документа: 0002508403
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.abe5

Способ получения водорода с полным улавливанием co и рециклом непрореагировавшего метана

Изобретение относится к области химии. Способ получения водорода включает получение синтез-газа в установке парового риформинга углеводородной загрузки, паровую конверсию полученного синтез-газа с получением потока водорода, содержащего метан и диоксид углерода, улавливание диоксида углерода,...
Тип: Изобретение
Номер охранного документа: 0002509720
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac33

Способ гидрокрекинга с использованием реакторов периодического действия и сырья, содержащего 200 м.д.масс.-2% масс. асфальтенов

Изобретение относится к способу гидрокрекинга углеводородного сырья, содержащего 200 м.д.- мас. 2% асфальтенов и/или больше 10 м.д. мас. металлов. Способ включает в себя гидродеметаллирование по меньшей мере в 2 реакционных зонах периодического действия, содержащих катализатор...
Тип: Изобретение
Номер охранного документа: 0002509798
Дата охранного документа: 20.03.2014
10.01.2015
№216.013.1a7e

Улучшенный способ селективного уменьшения содержания бензола и легких ненасыщенных соединений в различных углеводородных фракциях

Изобретение относится к способу обработки двух фракций сырья для уменьшения содержания ненасыщенных соединений. Первое сырье образовано большей частью углеводородами, содержащими по меньшей мере 4 атома углерода в молекуле, и содержит по меньшей мере одно ненасыщенное соединение, в том числе...
Тип: Изобретение
Номер охранного документа: 0002538210
Дата охранного документа: 10.01.2015
15.03.2019
№219.016.e0f0

Способ комбинированного производства электроэнергии и получения обогащенного водородом газа паровым риформингом углеводородной фракции с подводом тепла посредством сжигания водорода по месту осуществления способа

Изобретение относится к способу комбинированного производства электроэнергии и получения обогащенного водородом газа паровым риформингом углеводородной фракции. Способ получения синтез-газа паровым риформингом углеводородного сырья в реакторе и комбинированного производства электрической...
Тип: Изобретение
Номер охранного документа: 0002425995
Дата охранного документа: 10.08.2011
19.06.2019
№219.017.8bca

Емкость, содержащая слой гранул, и система распределения газовой и жидкой фаз, циркулирующих в упомянутой емкости в восходящем потоке

Изобретение относится к емкости, содержащей один слой насадки и средства подачи смеси жидкости с газом ко дну емкости. Емкость содержит систему сепарации жидкой фазы и газовой фазы, содержащихся в смеси, причем система размещена между слоем и средствами подачи смеси. Система содержит камеру,...
Тип: Изобретение
Номер охранного документа: 0002466782
Дата охранного документа: 20.11.2012
29.06.2019
№219.017.9fe2

Способ приготовления смешанной шихты, содержащей биомассу и тяжелую углеводородную фракцию, с целью дальнейшей газификации

Изобретение относится к области химии. Лигноцеллюлозную биомассу, представляющую собой пластинки с максимальным размером от 0,5 см до 5 см, смешивают с тяжелой углеводородной фракцией с первоначальной точкой кипения, превышающей 350°С, нагретой до температуры, находящейся в пределах от 250°С до...
Тип: Изобретение
Номер охранного документа: 0002455344
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.a166

Реактор-теплообменник с байонетными трубами, конструкция которого позволяет ему работать с перепадами давления порядка 100 бар между трубой и каландром

В изобретении представлен предназначенный для выполнения эндотермических реакций реактор-теплообменник, в состав которого входит каландр, внутри которого циркулирует текучий теплоноситель (11). Внутри каландра расположено множество параллельных труб (4). Внутри труб циркулирует среда,...
Тип: Изобретение
Номер охранного документа: 0002469785
Дата охранного документа: 20.12.2012
Показаны записи 11-15 из 15.
10.12.2013
№216.012.8925

Применение твердых веществ на основе феррита цинка в способе глубокого обессеривания кислородсодержащего сырья

Изобретение относится к области катализа. Описан способ обессеривания сырья, содержащего кислородсодержащие соединения, углеводородсодержащие соединения и серосодержащие органические соединения, улавливанием серы на улавливающей массе, содержащей оксиды железа или оксиды цинка и более 20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002500791
Дата охранного документа: 10.12.2013
27.02.2014
№216.012.a6c0

Способ получения спирта в контексте биорафинирования

Изобретение относится к способу получения спирта из предварительно обработанной лигноцеллюлозной биомассы. Способ включает этап ферментативного гидролиза ферментами, разлагающими целлюлозу и/или гемицеллюлозу, полученными при использовании по меньшей мере одного типа отходов с другого процесса...
Тип: Изобретение
Номер охранного документа: 0002508403
Дата охранного документа: 27.02.2014
20.03.2014
№216.012.abe5

Способ получения водорода с полным улавливанием co и рециклом непрореагировавшего метана

Изобретение относится к области химии. Способ получения водорода включает получение синтез-газа в установке парового риформинга углеводородной загрузки, паровую конверсию полученного синтез-газа с получением потока водорода, содержащего метан и диоксид углерода, улавливание диоксида углерода,...
Тип: Изобретение
Номер охранного документа: 0002509720
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac33

Способ гидрокрекинга с использованием реакторов периодического действия и сырья, содержащего 200 м.д.масс.-2% масс. асфальтенов

Изобретение относится к способу гидрокрекинга углеводородного сырья, содержащего 200 м.д.- мас. 2% асфальтенов и/или больше 10 м.д. мас. металлов. Способ включает в себя гидродеметаллирование по меньшей мере в 2 реакционных зонах периодического действия, содержащих катализатор...
Тип: Изобретение
Номер охранного документа: 0002509798
Дата охранного документа: 20.03.2014
10.01.2015
№216.013.1a7e

Улучшенный способ селективного уменьшения содержания бензола и легких ненасыщенных соединений в различных углеводородных фракциях

Изобретение относится к способу обработки двух фракций сырья для уменьшения содержания ненасыщенных соединений. Первое сырье образовано большей частью углеводородами, содержащими по меньшей мере 4 атома углерода в молекуле, и содержит по меньшей мере одно ненасыщенное соединение, в том числе...
Тип: Изобретение
Номер охранного документа: 0002538210
Дата охранного документа: 10.01.2015
+ добавить свой РИД