×
17.06.2023
223.018.819f

Результат интеллектуальной деятельности: Приемный канал лазерного дальномера

Вид РИД

Изобретение

Аннотация: Изобретение относится к области лазерной техники и касается приемного канала лазерного дальномера. Приемный канал содержит приемный объектив и два фоточувствительных элемента с усилителями, на выходах которых введены схемы временной фиксации сигнала. Фоточувствительные элементы расположены на минимально возможном расстоянии один от другого, а перед ними введены две наклонные плоскопараллельные оптические пластинки. Ближайшая к фоточувствительным элементам пластинка расположена перпендикулярно плоскости, содержащей оси фоточувствительных элементов и наклонена к ним на угол θ. На ее поверхность, противоположную фоточувствительным элементам, нанесено дихроичное покрытие, отражающее принимаемое излучение с рабочей длиной волны. Вторая пластинка, установленная ближе к приемному объективу, наклонена на угол минус θ. Технический результат заключается в обеспечении высокой точности временной фиксации принимаемого сигнала в широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры. 2 з.п. ф-лы, 3 ил.

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.

Известны приемники импульсного оптического излучения [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки t3 относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=с t3 /2, где с - скорость света. Подобным образом построены приемники импульсного излучения [2, 3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют недостаточный динамический диапазон, ограничивающий точность временной фиксации принимаемых сигналов и, тем самым, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Известно фотоприемное устройство [4], в котором указанный недостаток устранен за счет введения перед чувствительной площадкой фотоприемника управляемого электрооптического ослабителя, однако такое решение приводит к существенному усложнению устройства и ухудшению отношения сигнал/шум.

Наиболее близким по технической сущности к предлагаемому изобретению является приемный канал лазерного дальномера, включающий фотоприемное устройство с приемным объективом, причем, фотоприемное устройство содержит фоточувствительный элемент и усилитель [5]. Для расширения динамического диапазона сигналов в приемном канале [5] введена управляемая полупрозрачная шторка, положение которой зависит от уровня принимаемого сигнала. Недостаток такого технического решения - необходимость повторного измерения с соответствующим расходом ресурса прибора, и потери времени на выведение шторки и второе измерение.

Задачей изобретения является обеспечение высокой точности временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры.

Эта задача решается за счет того, что в известном приемном канале лазерного дальномера, включающем фотоприемное устройство с приемным объективом, причем, фотоприемное устройство содержит фоточувствительный элемент и усилитель, введен второй фоточувствительный элемент со вторым усилителем, на выходах усилителей введены схемы временной фиксации сигнала, представляющие собой последовательное включение дифференцирующего звена и нуль-компаратора, их выходы подключены ко входу формирователя выходного сигнала через коммутатор, управляемый с выхода порогового устройства, введенного на выходе дифференцирующего звена, принадлежащего фотоприемному устройству с более высокой чувствительностью, при этом фоточувствительные элементы расположены на минимально возможном расстоянии b один от другого, а перед ними введены две наклонные плоскопараллельные оптические пластинки, ближайшая к фоточувствительным элементам пластинка расположена перпендикулярно плоскости, содержащей оси фоточувствительных элементов и наклонена к ним на угол θ, на ее поверхность, противоположную фоточувствительным элементам, нанесено дихроичное покрытие, отражающее принимаемое излучение с рабочей длиной волны, вторая пластинка, установленная ближе к приемному объективу, наклонена на угол минус θ, при этом толщина каждой пластинки d должна быть минимальной при условии d≥nb⋅cosθ, где n - коэффициент преломления материала пластинки, b - расстояние между фоточувствительными элементами в плоскости, перпендикулярной их оптическим осям, а разность положений фоточувствительных элементов Δh* вдоль оси приемного объектива удовлетворяет соотношению где dp - допустимый диаметр кружка рассеяния в плоскости фоточувствительного элемента фотоприемного устройства с меньшей чувствительностью; F - фокусное расстояние приемного объектива; D0 - световой диаметр приемного объектива.

Толщина d1 ближайшей к приемному объективу первой пластинки может вдвое превышать толщину d2=d второй пластинки.

Первая и вторая пластинки могут быть взаимно перпендикулярны.

На чертеже фиг. 1 представлена функциональная схема приемного канала лазерного дальномера. На фиг. 2 а) показана оптическая схема приемного канала. На фиг. 2 б) представлен реальный ход лучей во второй пластинке, а на фиги 2 в) - эквивалентный ход лучей во второй пластинке на ее развертке. dr=d/n - толщина редуцированной пластинки [7]. Фиг. 3 иллюстрирует форму сигналов U(t) на выходе усилителей (фиг 3а) и U'(t) на выходе первого дифференцирующего звена (фиг. 3б).

Приемный канал лазерного дальномера (фиг. 1) содержит первый фоточувствительный элемент 1 с первым усилителем 2, второй фоточувствительный элемент 3 с вторым усилителем 4, дифференцирующие звенья 5 и 6, нуль-компараторы 7 и 8, коммутатор 9, ко входам которого подключены выходы нуль-компараторов 7 и 8. Выход коммутатора связан со входом формирователя выходного сигнала 10. На выходе первого дифференцирующего звена 5 включено пороговое устройство 11, выход которого подключен к управляющему входу коммутатора 9.

Фоточувствительные элементы 1 и 2 конструктивно размещены в фокусе приемного объектива 12 (фиг. 2а). Между приемным объективом и фоточувствительными элементами введены две симметрично наклоненные на угол 9 оптические пластинки 13 и 14. На заднюю грань пластинки 14 нанесено дихроичное покрытие 15, прозрачное для видимого излучения и отражающее излучение с рабочей длиной волны в сторону фоточувствительных элементов.

Устройство работает следующим образом.

В исходном состоянии коммутатор 9 открыт для сигналов с выхода нуль-компаратора 7. Если сигналы на выходе усилителя 2 и дифференцирующего звена 5 находятся в пределах линейного диапазона, то формирователь выходного сигнала фиксирует положение их максимума в один и тот же момент времени t0 независимо от амплитуды (фиг. 3б). Из-за инерционности дифференцирующего звена момент t0 незначительно запаздывает относительно момента tмакс максимума сигнала U1(t). Это запаздывание не зависит от амплитуды сигналов U1(t) и U2(t) во всем их линейном диапазоне. Отклик дифференцирующего звена на сигналы максимальной амплитуды в линейном диапазоне превышает уровень Uпор срабатывания порогового устройства 8, вызывая тем самым, подачу на управляющий вход коммутатора 5 переключающего сигнала в интервале времени от tорг<t0 до tпор<t0, где tорг - момент срабатывания порогового устройства от реакции дифференцирующего звена 5 на ограниченный сигнал U'1орг; tпор момент срабатывания порогового устройства от реакции дифференцирующего звена 5 на сигнал U1макс максимальной амплитуды в пределах линейного диапазона. При этом коммутатор 9 закрывается для сигнала с фоточувствительного элемента 1 и открывается для сигнала с фоточувствительного элемента 3. Вследствие того, что максимум отклика дифференцирующего звена U'1max (фиг. 3б) опережает по времени максимум импульса U1орг, последний блокируется, и на выход коммутатора проходит импульс U'2(t) от фоточувствительного элемента 3, имеющий значительно меньшую амплитуду, лежащую в линейном диапазоне, благодаря чему временное положение входного сигнала фиксируется по-прежнему в момент времени t0 в практически неограниченном амплитудном диапазоне входных сигналов.

Согласно предлагаемому изобретению входное излучение разделяется второй оптической пластинкой 14 на два пучка разной интенсивности. Один пучок, отраженный от задней поверхности пластинки, поступает на основной фоточувствительный элемент 1. Более слабый пучок отражается от передней поверхности пластинки 14 и фокусируется на менее чувствительный фоточувствительный элемент 3 (фиг. 2а). Для коррекции вносимых пластинкой 14 аберраций введена аналогичная пластинка 13, наклоненная на противоположный угол минус θ. При этом, однако, пластинка 14, отражающая излучение от задней поверхности, действует как пластинка двойной толщины, и система из двух пластинок компенсирует аберрации в прямой ветви (в направлении к предполагаемому окуляру) но вносит искажения в плоскости фоточувствительных элементов - как одна эквивалентная пластинка.

При этом [7] смещение фокуса вдоль оси (фиг. 2в)

где d - толщина пластинки;

n - коэффициент преломления материала пластинки;

θ - угол падения луча на пластинку;

θ' - угол преломления по закону Снеллиуса

Поскольку [8] формула (1) с учетом (2) записывается в виде

При малых значениях 0 формула (4) принимает вид

Пример 1

θ=0; n=1,5; d=2 мм.

Пример 2

θ=45°; n=1,5; d=2 мм.

Несовпадение Δh фокальных плоскостей компенсируется размещением фоточувствительных элементов на разной высоте, соответствующей величине Δh (фиг. 2а). Следует учитывать допустимую дефокусировку ΔF одного или обоих фоточувствительных элементов в пределах глубины резкости объектива. В этом случае необходимая конструктивная разность высот фоточувствительных элементов

Δh*=Δh-ΔF,

где ΔF=dpF/D0,

dp - допустимый диаметр кружка рассеяния,

F - фокусное расстояние объектива,

D0 - световой диаметр объектива.

Таким образом, допустимая разность высот Δh* фоточувствительных элементов должна находиться в пределах

Пример 3

dp=0,3 мм; F=150 мм; D0=45 мм; Δh=0,93 мм (Пример 2).

ΔF=0,3⋅150/45=1 мм.

Δh*=0,93-1<0, следовательно, при параметрах примера 3 фоточувствительные элементы могут устанавливаться на одном уровне.

Одинаковые оптические пластинки, наклоненные в противоположные стороны взаимно, устраняют астигматизм и кому, вносимые каждой из пластинок [9]. Следует иметь в виду, что при отражении принимаемого излучения от задней поверхности пластинки, ее толщина эквивалентно удваивается. Если величина аберраций в прямом канале некритична, то для устранения аберраций в приемном канале толщина пластинки 13 может быть удвоена, благодаря чему аберрации второй пластинки 14 корректируются.

Величина астигматизма наклонной пластинки ΔhA [8]

Пример 4

В условиях примера 2 (θ=45°=π/4)

ΔhA ~ - d(n2-1)θ2/n3 - - 2(2,25 - 1) 9,86/(16⋅3,38) = -0,46 мм.

Меридиональная кома третьего порядка ΔhC [8]

Пример 5

В условиях примеров 3, 4

ΔhC ~ 3d(n2-1)(D0/F)2θ/2n3 ~ 6⋅1,25(45/150)20,785/(2⋅3,38)=0,08 мм.

Как показывают приведенные примеры, в зависимости от параметров оптической системы можно подобрать такое их сочетание, при котором отрицательное влияние оптических пластинок может быть несущественным, в первую очередь для высокочувствительного фотоприемного устройства.

Описанное техническое решение обеспечивает практически неограниченное расширение линейного динамического диапазона во всем рабочем динамическом диапазоне первого и второго фоточувствительных элементов. При этом обеспечивается предельно достижимая точность временной фиксации сигнала при однократных замерах, то есть без ухудшения быстродействия. Аппаратура имеет минимальные габариты и размещается в том же корпусе, что и предыдущая модель.

В соответствии с предлагаемым изобретением был разработан макетный образец приемника. Проведенные исследования подтвердили выполнение заданных технических требований - как в одиночном, так и в частотном режиме работы.

Таким образом, предлагаемое техническое решение обеспечивает высокую точность временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры.

Источники информации

1. В.А. Волохатюк и др. Вопросы оптической локации. - М.: Советское радио, 1971. - с. 213.

2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с. 593.

3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в.З. - с. 78 - 83.

4. Radiation receiver with active optical protection system. US patent No 6,548,807.

5. В.Г. Вильнер и др. Лазерный дальномер. Патент РФ №2655003 по заявке на изобретение №2017123345 от 03 июля 2017 г. - прототип.

6. Г.И. Цуканова. Прикладная оптика. Часть 1. Университет ИТМО - СПб: 2008. - с. 16-18.

7. В.А. Панов и др. Справочник конструктора оптико-механических приборов. - Л.; Машиностроение, 1980. - с. 127-128.

8. Г.Б. Двайт. Таблицы интегралов и другие математические формулы. - М.; Наука, 1973. - с. 83.

9. Т.С. Воропай и др. Коррекция астигматизма в спектральных приборах с помощью наклонной плоскопараллельной пластинки. «Вестник БГУ». Сер. 1. 2007, №3. - с. 12-17.

Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
10.05.2018
№218.016.4358

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза...
Тип: Изобретение
Номер охранного документа: 0002649695
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.476c

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем...
Тип: Изобретение
Номер охранного документа: 0002650851
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b60

Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой

Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой. Технический результат – повышение точности. Для этого обеспечено формирование на основе выходного сигнала вращения...
Тип: Изобретение
Номер охранного документа: 0002651612
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7ef4

Лазерный излучатель

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазерный излучатель содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, между источником накачки и активным элементом введена призма, в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002664768
Дата охранного документа: 22.08.2018
29.03.2019
№219.016.ee10

Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе

Изобретение относится к приборостроению и может быть использовано для определения ошибок ориентации измерительных осей гироскопов и маятниковых акселерометров в БИНС после температурных, вибрационных или ударных воздействий, а также в процессе эксплуатации. Способ определения ошибок ориентации...
Тип: Изобретение
Номер охранного документа: 0002683144
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b2e

Способ компенсации влияния медленного меандра на показания лазерного гироскопа

Изобретение относится к приборостроению и измерительной технике. Сущность изобретения заключается в том, что способ компенсации влияния медленного меандра на показания лазерного гироскопа содержит этапы, на которых предварительно проводят климатические испытания лазерного гироскопа и определяют...
Тип: Изобретение
Номер охранного документа: 0002685795
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
Showing 11-20 of 97 items.
27.06.2015
№216.013.58f6

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, осветитель, включающий лампу накачки и отражатель, а также резонатор, включающий призму-крышу и плоское зеркало, установленные с противоположных торцов активного элемента таким образом, что ребро...
Тип: Изобретение
Номер охранного документа: 0002554315
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6a05

Способ определения высоты летательного аппарата

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала. По результатам статистической...
Тип: Изобретение
Номер охранного документа: 0002558694
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f19

Лазерный дальномер

Изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности для автоматического определения высоты и вертикальной скорости летательного аппарата. Лазерный дальномер содержит...
Тип: Изобретение
Номер охранного документа: 0002560011
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.775e

Устройство для определения дальности и скорости

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах. Сигнал от источника направляется на объект, и приемник излучения фиксирует отраженный от объекта сигнал. От приемника...
Тип: Изобретение
Номер охранного документа: 0002562147
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.775f

Способ определения дальности и скорости удаленного объекта

Изобретение относится к способу определения высоты и вертикальной скорости летательного аппарата. Способ включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты,...
Тип: Изобретение
Номер охранного документа: 0002562148
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7761

Устройство для измерения высоты и вертикальной скорости летательного аппарата

Изобретение относится к устройству для автоматического определения высоты и вертикальной скорости летательного аппарата. Устройство содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и...
Тип: Изобретение
Номер охранного документа: 0002562150
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d0a

Способ измерения высоты и вертикальной скорости ла

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты. При этом в рабочем режиме полета...
Тип: Изобретение
Номер охранного документа: 0002563607
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0b

Способ оценки дальности и скорости удаленного объекта

Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных...
Тип: Изобретение
Номер охранного документа: 0002563608
Дата охранного документа: 20.09.2015
10.04.2016
№216.015.2c63

Лазер с модулированной добротностью резонатора

Изобретение относится к лазерной технике. Лазер с модулированной добротностью резонатора включает активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в рабочем положении...
Тип: Изобретение
Номер охранного документа: 0002579548
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c75

Лазер с оптико-механическим затвором

Изобретение относится к лазерной технике. Лазер с оптико-механическим затвором включает корпус, активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно относительно корпуса, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в...
Тип: Изобретение
Номер охранного документа: 0002579642
Дата охранного документа: 10.04.2016
+ добавить свой РИД