×
17.06.2023
223.018.8016

Результат интеллектуальной деятельности: Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов

Вид РИД

Изобретение

Аннотация: Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов относится к преобразовательной технике и может быть использован при наземных испытаниях систем электроснабжения космических аппаратов, получающих электроэнергию от имитаторов солнечных батарей и от имитаторов аккумуляторных батарей. Поставленная задача решается тем, что в автоматизированном испытательном комплексе для наземной экспериментальной отработки систем электроснабжения космических аппаратов, подключаемом к испытываемому блоку энергопреобразующей аппаратуры (ЭПА) космического аппарата и содержащем имитаторы солнечных и аккумуляторных батарей, а также имитаторы нагрузочных устройств космического аппарата, автоматизированную систему контроля (АСК) и Сервер, в котором все блоки комплекса объединены в единую информационную сеть Ethernet, каждый из имитаторов солнечных и аккумуляторных батарей и имитатор нагрузки соединен с соответствующим отдельным источником бесперебойного питания (ИБП), каждый из которых соединен с промышленной трехфазной сетью, при этом все указанные ИБП соединены между собой параллельно, а их выходы синхронизированы, при этом к образованной ими автономной трехфазной сети переменного тока подсоединены также АСК и Сервер. Техническим результатом при реализации заявленного решения является повышение отказоустойчивости и надежности автоматизированного испытательного комплекса при проведении наземной экспериментальной отработки систем электроснабжения космических аппаратов за счет формирования автономной трехфазной сети переменного тока. 1 ил.

Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов относится к преобразовательной технике и может быть использован при наземных испытаниях систем электроснабжения космических аппаратов, получающих электроэнергию от имитаторов солнечных батарей и от имитаторов аккумуляторных батарей. Данная система является автоматизированным распределенным энергопреобразующим комплексом, в состав которого входят встраиваемые цифровые вычислительные машины, и который обеспечивает полностью автоматический режим проведения испытаний систем электроснабжения космических аппаратов (СЭС КА), характеризующихся повышенными требованиями к надежности. Система может использоваться для физического моделирования СЭС КА на всех этапах наземной экспериментальной отработки.

Известно устройство для испытания вторичных источников электропитания, представленное в полезной модели РФ №129263, и содержащее первичный источник электроэнергии, испытываемую систему электроснабжения космического аппарата, блок нагрузочного устройства рекуперационного типа, имитирующий электрические нагрузки космического аппарата, а также источник бесперебойного питания, работающий в режиме двойного преобразования электроэнергии.

Недостатками указанного устройства являются: необходимость использования специального источника бесперебойного питания, позволяющего подключать к нему нагрузочное устройство рекуперативного типа, недостаточная надежность устройства в целом, обусловленная подключением к сети переменного тока через общий источник бесперебойного питания; выход из строя которого неизбежно приведет к остановке и срыву испытаний. Кроме того, недостатком является невозможность проводить в полном объеме испытания систем электроснабжения космических аппаратов из-за отсутствия имитатора солнечной батареи и имитатора аккумуляторной батареи, что сужает функциональные возможности комплекса.

Известен также комплекс для наземных испытаний систем электроснабжения космических аппаратов по полезной модели РФ №154432, содержащий источник бесперебойного питания, два нагрузочных устройства рекуперативного типа, испытываемую систему электроснабжения, имитатор солнечной батареи и имитатор аккумуляторной батареи, в котором входные клеммы источника бесперебойного питания подключены к промышленной сети переменного тока, причем имитатор солнечной батареи и имитатор аккумуляторной батареи присоединены к соответствующим выводам системы электроснабжения.

Недостатком комплекса также является низкая надежность, обусловленная подключением к сети переменного тока через общий источник бесперебойного питания, выход из строя, которого, неизбежно приведет к остановке и срыву испытаний. Кроме того, недостатком комплекса является отсутствие централизованного управления для проведения полностью автоматизированных испытаний и получения необходимой для последующего анализа информации, а также для ведения протокола испытаний.

Наиболее близким к заявляемой полезной модели по достигаемому эффекту и выполняемым функциям является автоматизированный комплекс наземного контроля и испытаний систем электроснабжения космических аппаратов по полезной модели РФ №90958, содержащий управляющую ЭВМ, выполняющую функции сервера, который реализует управление составными частями комплекса путем обмена управляющей и измерительной информацией по Ethernet интерфейсу, кроме того, в состав комплекса введены имитаторы солнечной батареи, блоки имитации аккумуляторной батареи, блоки имитации нагрузок, каждый из указанных блоков имеет в своем составе контроллер, связанный с управляющей ЭВМ по Ethernet интерфейсу, Автоматизированная система контроля (АСК), входящая в состав комплекса, обеспечивает проверку разобщенных и соединенных цепей, а также сопротивление изоляции, телеметрию технологических команд управления, опрос датчиков температуры и состояния системы электроснабжения космического аппарата. Протоколирование и сбор данных в ходе испытаний осуществляет сервер. Все блоки комплекса объединены в единую информационную сеть Ethernet, с целью централизованного управления, проведения полностью автоматизированных испытаний и получения необходимой для последующего анализа информации, а также для ведения протокола испытаний. Недостатком является невозможность работы комплекса при аварийном отключении промышленной сети переменного тока.

Задачей заявляемого изобретения является повышение отказоустойчивости и надежности автоматизированного испытательного комплекса при проведении наземной экспериментальной отработки систем электроснабжения космических аппаратов за счет формирования автономной трехфазной сети переменного тока.

Поставленная задача решается тем, что в автоматизированном испытательном комплексе для наземной экспериментальной отработки систем электроснабжения космических аппаратов, подключаемом к испытываемому блоку энергопреобразующей аппаратуры (ЭПА) космического аппарата, и содержащем имитаторы солнечных и аккумуляторных батарей, а также имитаторы нагрузочных устройств космического аппарата, автоматизированную систему контроля (АСК) и Сервер, при этом все блоки комплекса объединены в единую информационную сеть Ethernet, каждый из имитаторов солнечных и аккумуляторных батарей и нагрузки соединен с соответствующим отдельным источником бесперебойного питания (ИБП), каждый из которых соединен с промышленной трехфазной сетью, при этом все указанные ИБП соединены между собой параллельно, а их выходы синхронизированы, при этом к образованной ими автономной трехфазной сети переменного тока подсоединены также АСК и Сервер.

На рисунке представлена структурная схема заявляемого автоматизированного испытательного комплекса для наземной экспериментальной отработки систем электроснабжения космических аппаратов.

Данный автоматизированный испытательный комплекс позволяет проводить электротехнические наземные испытания систем электроснабжения космических аппаратов (СЭС КА) с повышенным уровнем надежности. В комплексе может имитироваться необходимое количество элементов СЭС КА, в зависимости от мощности и типа СЭС.

На рисунке показаны имитируемые четыре аккумуляторных литий-ионных батареи, представленные имитаторами аккумуляторных батарей 1-4, и две панели солнечных батарей, имитируемые с помощью двух имитаторов 5 и 6. Имитация суммарной эквивалентной бортовой нагрузки осуществляется с помощью имитатора нагрузки 7. Автоматизированная система контроля (АСК) 8, входящая в состав комплекса, обеспечивает проверку разобщенных и соединенных цепей, а также сопротивление изоляции, телеметрию технологических команд управления, опрос датчиков температуры и состояния СЭС КА. Протоколирование и сбор данных в ходе испытаний осуществляет Сервер 9, также подключенный к автономной силовой сети источников бесперебойного питания ИБП 380 В, и, с помощью мультиплексного канала обмена (МКО), соединенный с испытываемым блоком энергопреобразующей аппаратуры (ЭПА) космического аппарата 10. Все блоки комплекса объединены в единую информационную сеть Ethernet, с целью централизованного управления, проведения полностью автоматизированных испытаний и получения необходимой для последующего анализа информации, а также для ведения протокола испытаний. Испытываемый блок ЭПА КА 10 соединен с имитаторами аккумуляторных батарей 1-4, имитаторами солнечных батарей 5 и 6 и имитатором нагрузки 7. Каждый из блоков имитаторов соединен с соответствующим отдельным ИБП 11-17, соединенными параллельно между собой и с первичным источником электроэнергии (промышленная сеть переменного тока 380 В).

Составные части автоматизированного испытательного комплекса для наземной экспериментальной отработки систем электроснабжения космических аппаратов являются реализациями известных технических решений. Конкретная их схемная и конструктивно-технологическая реализация определяется существующим уровнем техники.

Имитаторы аккумуляторных батарей 1-4 предназначены для: имитации режимов заряда и разряда аккумуляторных батарей; имитации напряжения на каждом аккумуляторном элементе всей батареи; имитации сигнализаторов давления; имитации датчиков температуры; имитации аналоговых датчиков давления; имитации электрообогревателей аккумуляторной батареи. Имитатор аккумуляторной батареи 8 обеспечивает полноту электрических проверок автоматики систем электроснабжения, имитируя различные сочетания состояния датчиков давления и температуры, различные состояния параметров напряжения аккумуляторной батареи и ее элементов при минимальных затратах времени. Описание указанного имитатора приведено в патенте на полезную модель №73102.

Имитаторы солнечных батарей 5 и 6 воспроизводят на своих выходных шинах статические и динамические характеристики солнечной батареи, позволяют имитировать работу солнечных батарей спутника, находящегося на любом типе рабочей орбиты, имеют возможность имитации режимов «вход в тень» и «выход из тени» (патенты на полезную модель №№50014, 52522).

Блок имитации нагрузок 7 позволяет имитировать различные виды нагрузок: постоянную (активную) нагрузку, импульсную (или скачкообразную), комплексную (резистивно-емкостную), частотную с синусоидальной формой тока (патент на полезную модель №50317). При имитации постоянной нагрузки имитатор преобразует энергию постоянного тока СЭП КА в энергию переменного тока с последующей передачей ее в питающую сеть. Комплексная нагрузка обеспечивает синхронное параллельное подключение постоянного активного сопротивления и последовательной RC-цепи к выходной шине системы электроснабжения космического аппарата (СЭП КА). Гармоническая нагрузка создается путем формирования синусоидального тока в выходных шинах СЭП КА. При этом ток изменяется в диапазоне частот от 20 Гц до 100 кГц с плавно-регулируемой амплитудой, что позволяет исследовать нагрузочную способность в нескольких декадах, а также измерять выходной импеданс блока ЭПА. Импульсная нагрузка обеспечивает независимое увеличение (наброс) или уменьшение (сброс) постоянной нагрузки с регулируемой коммутационной длительностью подключения или отключения. Длительность фронта наброса или сброса тока нагрузки зависит от параметров задания, индуктивности подводящих проводов и величины тока наброса или сброса.

АСК 8 предназначена для контроля состояния контактов реле и электронных коммутаторов блока ЭПА; контроля временных и амплитудных параметров импульсов напряжения; формирования команд управления в виде импульсов напряжения или «сухим» контактом; формирования автономных команд управления при непосредственном доступе оператора к включению и отключению объекта контроля; имитации резистивных датчиков и сопротивлений; измерения сопротивлений, прямых падений напряжения на диодах и токов утечки диодов при обратном напряжении.

АСК обеспечивает управление и обмен информацией через конвертор по интерфейсу RS-485 23 с устройствами АСК, обмен информацией по Ethernet с Сервером 9.

При работе комплекса в случае аварийного отключении промышленной сети переменного тока включаются все ИБП 11-17, при этом работа комплекса продолжается в течение времени, зависящего от потребляемой мощности и емкости аккумуляторных батарей ИБП. При выходе из строя одного (или более) из ИБП 11-17 напряжение в автономной сети 380 В, образованной параллельным соединением всех ИБП, будет поддерживаться другими ИБП, и испытания продолжатся. Таким образом, предложенная структура увеличивает надежность и повышает отказоустойчивость комплекса.

Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов, подключаемый к испытываемому блоку энергопреобразующей аппаратуры (ЭПА) космического аппарата и содержащий имитаторы солнечных и аккумуляторных батарей, а также имитаторы нагрузочных устройств космического аппарата, автоматизированную систему контроля (АСК) и Сервер, при этом все блоки комплекса объединены в единую информационную сеть Ethernet, отличающийся тем, что каждый из имитаторов солнечных, аккумуляторных батарей и нагрузки соединен с соответствующим отдельным источником бесперебойного питания (ИБП), каждый из которых соединен с промышленной трехфазной сетью, при этом все указанные ИБП соединены между собой параллельно, а их выходы синхронизированы, при этом к образованной ими автономной трехфазной сети переменного тока подсоединены также АСК и Сервер.
Источник поступления информации: Роспатент

Showing 11-20 of 58 items.
20.06.2018
№218.016.6459

Способ контроля отверждения эмалевой изоляции проводов

Использование: для определения степени отверждения полимерных покрытий. Сущность изобретения заключается в том, что способ контроля степени отверждения полимерного диэлектрического покрытия обмоточных проводов включает воздействие на диэлектрическое покрытие электрическим полем и измерение...
Тип: Изобретение
Номер охранного документа: 0002658087
Дата охранного документа: 19.06.2018
06.07.2018
№218.016.6d46

Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Представленный датчик для непрерывного контроля изоляции проводов содержит корпус, внутри которого расположен проводящий рабочий элемент, и стойку. Корпус изготовлен в виде...
Тип: Изобретение
Номер охранного документа: 0002660302
Дата охранного документа: 05.07.2018
14.07.2018
№218.016.7145

Способ контроля параметров сыпучих материалов в резервуарах

Изобретение может быть использовано для регистрации уровня сыпучих сред в резервуарах в различных отраслях промышленности: химической, фармацевтической, пищевой, строительной и т.д. В способе измерения параметров сыпучих материалов в резервуарах с помощью оптического устройства в качестве...
Тип: Изобретение
Номер охранного документа: 0002661314
Дата охранного документа: 13.07.2018
24.07.2018
№218.016.7418

Способ управления импульсным понижающим преобразователем напряжения со стабилизацией тока (варианты)

Изобретение относится к электротехнике, а именно к способам управления импульсными преобразователями постоянного напряжения и тока, которые широко применяются для питания различных устройств во многих областях техники. Технический результат заключается в стабилизации выходного тока...
Тип: Изобретение
Номер охранного документа: 0002661900
Дата охранного документа: 23.07.2018
26.07.2018
№218.016.75c1

Устройство для контроля толщины изоляции микропровода

Изобретение относится к информационно-измерительной технике и автоматике, в частности к устройствам контроля толщины изоляции проводов. Новым является то, что в устройство для контроля толщины изоляции микропровода, содержащее емкостный датчик, с отверстиями для пропускания через них...
Тип: Изобретение
Номер охранного документа: 0002662249
Дата охранного документа: 25.07.2018
19.08.2018
№218.016.7e13

Ёмкостный датчик для контроля толщины изоляции провода

Изобретение относится к устройствам контроля толщины изоляции проводов. Новым является то, что в емкостный датчик, выполненный в виде резервуара, заполненного жидкой рабочей средой, резервуар выполнен в виде тройника, состоящего из вертикального и горизонтального патрубков, в горизонтальном...
Тип: Изобретение
Номер охранного документа: 0002664256
Дата охранного документа: 15.08.2018
29.08.2018
№218.016.8101

Резервированная четырёхканальная цифровая управляющая система

Изобретение относится к вычислительной технике. Техническим результатом является повышение отказоустойчивости, контролепригодности и автономности системы. Система содержит четыре идентичных управляющих каналов, каждый из которых содержит вычислительное устройство (ВУ), мажоритарный элемент...
Тип: Изобретение
Номер охранного документа: 0002665252
Дата охранного документа: 28.08.2018
22.09.2018
№218.016.8933

Навигационный радиооптический групповой отражатель кругового действия со светоотражающими гранями

Изобретение относится к навигации и может использоваться на внутренних водных путях в составе плавучих буев для обозначения фарватера или кромки судоходного канала одновременно в радиолокационном и оптическом диапазонах волн. Навигационный радиооптический групповой отражатель кругового действия...
Тип: Изобретение
Номер охранного документа: 0002667325
Дата охранного документа: 18.09.2018
04.10.2018
№218.016.8f1f

Способ дезинтегрирования кускового сырья

Изобретение относится к способу тонкого измельчения и может быть использовано для переработки твердого кускового сырья в химической, строительной и других отраслях промышленности. Способ заключается в том, что в ограниченное пространство камеры помола, внутри которой вертикально расположено два...
Тип: Изобретение
Номер охранного документа: 0002668675
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.906c

Способ увеличения управляющего напряжения на затворе gan транзистора

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия, работающих в режиме обогащения. На поверхность полупроводниковой пластины с эпитаксиальной гетероструктрурой типа p-GaN/AlGaN/GaN плазмохимическими...
Тип: Изобретение
Номер охранного документа: 0002669265
Дата охранного документа: 09.10.2018
+ добавить свой РИД